# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device torch.backends.cuda.matmul.allow_tf32 = False class VersatileDiffusionMegaPipelineFastTests(unittest.TestCase): pass @slow @require_torch_gpu class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_from_save_pretrained(self): pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt_image = load_image( "https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg" ) generator = torch.Generator(device=torch_device).manual_seed(0) image = pipe.dual_guided( prompt="first prompt", image=prompt_image, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy", ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(tmpdirname) pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) generator = generator.manual_seed(0) new_image = pipe.dual_guided( prompt="first prompt", image=prompt_image, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=2, output_type="numpy", ).images assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass" def test_inference_dual_guided_then_text_to_image(self): pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16) pipe.to(torch_device) pipe.set_progress_bar_config(disable=None) prompt = "cyberpunk 2077" init_image = load_image( "https://raw.githubusercontent.com/SHI-Labs/Versatile-Diffusion/master/assets/benz.jpg" ) generator = torch.Generator(device=torch_device).manual_seed(0) image = pipe.dual_guided( prompt=prompt, image=init_image, text_to_image_strength=0.75, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy", ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0081, 0.0032, 0.0002, 0.0056, 0.0027, 0.0000, 0.0051, 0.0020, 0.0007]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 prompt = "A painting of a squirrel eating a burger " generator = torch.Generator(device=torch_device).manual_seed(0) image = pipe.text_to_image( prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy" ).images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.0408, 0.0181, 0.0, 0.0388, 0.0046, 0.0461, 0.0411, 0.0, 0.0222]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2 image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images image_slice = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) expected_slice = np.array([0.3403, 0.1809, 0.0938, 0.3855, 0.2393, 0.1243, 0.4028, 0.3110, 0.1799]) assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-2