# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import math import tracemalloc import unittest import torch from diffusers import UNet2DModel from diffusers.utils import floats_tensor, logging, slow, torch_all_close, torch_device from ..test_modeling_common import ModelTesterMixin logger = logging.get_logger(__name__) torch.backends.cuda.matmul.allow_tf32 = False class Unet2DModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": (32, 64), "down_block_types": ("DownBlock2D", "AttnDownBlock2D"), "up_block_types": ("AttnUpBlock2D", "UpBlock2D"), "attention_head_dim": None, "out_channels": 3, "in_channels": 3, "layers_per_block": 2, "sample_size": 32, } inputs_dict = self.dummy_input return init_dict, inputs_dict class UNetLDMModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self): batch_size = 4 num_channels = 4 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (4, 32, 32) @property def output_shape(self): return (4, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "sample_size": 32, "in_channels": 4, "out_channels": 4, "layers_per_block": 2, "block_out_channels": (32, 64), "attention_head_dim": 32, "down_block_types": ("DownBlock2D", "DownBlock2D"), "up_block_types": ("UpBlock2D", "UpBlock2D"), } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_from_pretrained_hub(self): model, loading_info = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU") def test_from_pretrained_accelerate(self): model, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) model.to(torch_device) image = model(**self.dummy_input).sample assert image is not None, "Make sure output is not None" @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU") def test_from_pretrained_accelerate_wont_change_results(self): # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) model_accelerate.to(torch_device) model_accelerate.eval() noise = torch.randn( 1, model_accelerate.config.in_channels, model_accelerate.config.sample_size, model_accelerate.config.sample_size, generator=torch.manual_seed(0), ) noise = noise.to(torch_device) time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) arr_accelerate = model_accelerate(noise, time_step)["sample"] # two models don't need to stay in the device at the same time del model_accelerate torch.cuda.empty_cache() gc.collect() model_normal_load, _ = UNet2DModel.from_pretrained( "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False ) model_normal_load.to(torch_device) model_normal_load.eval() arr_normal_load = model_normal_load(noise, time_step)["sample"] assert torch_all_close(arr_accelerate, arr_normal_load, rtol=1e-3) @unittest.skipIf(torch_device != "cuda", "This test is supposed to run on GPU") def test_memory_footprint_gets_reduced(self): torch.cuda.empty_cache() gc.collect() tracemalloc.start() # by defautl model loading will use accelerate as `low_cpu_mem_usage=True` model_accelerate, _ = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update", output_loading_info=True) model_accelerate.to(torch_device) model_accelerate.eval() _, peak_accelerate = tracemalloc.get_traced_memory() del model_accelerate torch.cuda.empty_cache() gc.collect() model_normal_load, _ = UNet2DModel.from_pretrained( "fusing/unet-ldm-dummy-update", output_loading_info=True, low_cpu_mem_usage=False ) model_normal_load.to(torch_device) model_normal_load.eval() _, peak_normal = tracemalloc.get_traced_memory() tracemalloc.stop() assert peak_accelerate < peak_normal def test_output_pretrained(self): model = UNet2DModel.from_pretrained("fusing/unet-ldm-dummy-update") model.eval() model.to(torch_device) noise = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0), ) noise = noise.to(torch_device) time_step = torch.tensor([10] * noise.shape[0]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-13.3258, -20.1100, -15.9873, -17.6617, -23.0596, -17.9419, -13.3675, -16.1889, -12.3800]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-3)) class NCSNppModelTests(ModelTesterMixin, unittest.TestCase): model_class = UNet2DModel @property def dummy_input(self, sizes=(32, 32)): batch_size = 4 num_channels = 3 noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [10]).to(dtype=torch.int32, device=torch_device) return {"sample": noise, "timestep": time_step} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64, 64, 64], "in_channels": 3, "layers_per_block": 1, "out_channels": 3, "time_embedding_type": "fourier", "norm_eps": 1e-6, "mid_block_scale_factor": math.sqrt(2.0), "norm_num_groups": None, "down_block_types": [ "SkipDownBlock2D", "AttnSkipDownBlock2D", "SkipDownBlock2D", "SkipDownBlock2D", ], "up_block_types": [ "SkipUpBlock2D", "SkipUpBlock2D", "AttnSkipUpBlock2D", "SkipUpBlock2D", ], } inputs_dict = self.dummy_input return init_dict, inputs_dict @slow def test_from_pretrained_hub(self): model, loading_info = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) inputs = self.dummy_input noise = floats_tensor((4, 3) + (256, 256)).to(torch_device) inputs["sample"] = noise image = model(**inputs) assert image is not None, "Make sure output is not None" @slow def test_output_pretrained_ve_mid(self): model = UNet2DModel.from_pretrained("google/ncsnpp-celebahq-256") model.to(torch_device) torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) batch_size = 4 num_channels = 3 sizes = (256, 256) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-4836.2231, -6487.1387, -3816.7969, -7964.9253, -10966.2842, -20043.6016, 8137.0571, 2340.3499, 544.6114]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) def test_output_pretrained_ve_large(self): model = UNet2DModel.from_pretrained("fusing/ncsnpp-ffhq-ve-dummy-update") model.to(torch_device) torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) batch_size = 4 num_channels = 3 sizes = (32, 32) noise = torch.ones((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor(batch_size * [1e-4]).to(torch_device) with torch.no_grad(): output = model(noise, time_step).sample output_slice = output[0, -3:, -3:, -1].flatten().cpu() # fmt: off expected_output_slice = torch.tensor([-0.0325, -0.0900, -0.0869, -0.0332, -0.0725, -0.0270, -0.0101, 0.0227, 0.0256]) # fmt: on self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) def test_forward_with_norm_groups(self): # not required for this model pass