# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNet1DModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import require_torch_gpu torch.backends.cuda.matmul.allow_tf32 = False class PipelineFastTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def dummy_unet(self): torch.manual_seed(0) model = UNet1DModel( block_out_channels=(32, 32, 64), extra_in_channels=16, sample_size=512, sample_rate=16_000, in_channels=2, out_channels=2, down_block_types=["DownBlock1DNoSkip"] + ["DownBlock1D"] + ["AttnDownBlock1D"], up_block_types=["AttnUpBlock1D"] + ["UpBlock1D"] + ["UpBlock1DNoSkip"], ) return model def test_dance_diffusion(self): device = "cpu" # ensure determinism for the device-dependent torch.Generator scheduler = IPNDMScheduler() pipe = DanceDiffusionPipeline(unet=self.dummy_unet, scheduler=scheduler) pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(0) output = pipe(generator=generator, num_inference_steps=4) audio = output.audios generator = torch.Generator(device=device).manual_seed(0) output = pipe(generator=generator, num_inference_steps=4, return_dict=False) audio_from_tuple = output[0] audio_slice = audio[0, -3:, -3:] audio_from_tuple_slice = audio_from_tuple[0, -3:, -3:] assert audio.shape == (1, 2, self.dummy_unet.sample_size) expected_slice = np.array([-0.7265, 1.0000, -0.8388, 0.1175, 0.9498, -1.0000]) assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(audio_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch_gpu class PipelineIntegrationTests(unittest.TestCase): def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def test_dance_diffusion(self): device = torch_device pipe = DanceDiffusionPipeline.from_pretrained("harmonai/maestro-150k") pipe = pipe.to(device) pipe.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(0) output = pipe(generator=generator, num_inference_steps=100, sample_length_in_s=4.096) audio = output.audios audio_slice = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) expected_slice = np.array([-0.1576, -0.1526, -0.127, -0.2699, -0.2762, -0.2487]) assert np.abs(audio_slice.flatten() - expected_slice).max() < 1e-2