# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.utils import deprecate from diffusers.utils.testing_utils import require_torch_gpu, slow, torch_device torch.backends.cuda.matmul.allow_tf32 = False class DDPMPipelineFastTests(unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model def test_inference(self): device = "cpu" unet = self.dummy_uncond_unet scheduler = DDPMScheduler() ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(device) ddpm.set_progress_bar_config(disable=None) generator = torch.Generator(device=device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images generator = torch.Generator(device=device).manual_seed(0) image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array( [5.589e-01, 7.089e-01, 2.632e-01, 6.841e-01, 1.000e-04, 9.999e-01, 1.973e-01, 1.000e-04, 8.010e-02] ) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 def test_inference_deprecated_predict_epsilon(self): deprecate("remove this test", "0.13.0", "remove") unet = self.dummy_uncond_unet scheduler = DDPMScheduler(predict_epsilon=False) ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) # Warmup pass when using mps (see #372) if torch_device == "mps": _ = ddpm(num_inference_steps=1) if torch_device == "mps": # device type MPS is not supported for torch.Generator() api. generator = torch.manual_seed(0) else: generator = torch.Generator(device=torch_device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images generator = generator.manual_seed(0) image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", predict_epsilon=False)[0] image_slice = image[0, -3:, -3:, -1] image_eps_slice = image_eps[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) tolerance = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance def test_inference_predict_sample(self): unet = self.dummy_uncond_unet scheduler = DDPMScheduler(prediction_type="sample") ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) # Warmup pass when using mps (see #372) if torch_device == "mps": _ = ddpm(num_inference_steps=1) if torch_device == "mps": # device type MPS is not supported for torch.Generator() api. generator = torch.manual_seed(0) else: generator = torch.Generator(device=torch_device).manual_seed(0) image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images generator = generator.manual_seed(0) image_eps = ddpm(generator=generator, num_inference_steps=2, output_type="numpy")[0] image_slice = image[0, -3:, -3:, -1] image_eps_slice = image_eps[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) tolerance = 1e-2 if torch_device != "mps" else 3e-2 assert np.abs(image_slice.flatten() - image_eps_slice.flatten()).max() < tolerance @slow @require_torch_gpu class DDPMPipelineIntegrationTests(unittest.TestCase): def test_inference_cifar10(self): model_id = "google/ddpm-cifar10-32" unet = UNet2DModel.from_pretrained(model_id) scheduler = DDPMScheduler.from_pretrained(model_id) ddpm = DDPMPipeline(unet=unet, scheduler=scheduler) ddpm.to(torch_device) ddpm.set_progress_bar_config(disable=None) generator = torch.Generator(device=torch_device).manual_seed(0) image = ddpm(generator=generator, output_type="numpy").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) expected_slice = np.array([0.4454, 0.2025, 0.0315, 0.3023, 0.2575, 0.1031, 0.0953, 0.1604, 0.2020]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2