import argparse import os import torch import torch.nn.functional as F import PIL.Image from accelerate import Accelerator from datasets import load_dataset from diffusers import DDPM, DDPMScheduler, UNetModel from torchvision.transforms import ( CenterCrop, Compose, InterpolationMode, Lambda, RandomHorizontalFlip, Resize, ToTensor, ) from tqdm.auto import tqdm from transformers import get_linear_schedule_with_warmup def main(args): accelerator = Accelerator(mixed_precision=args.mixed_precision) model = UNetModel( attn_resolutions=(16,), ch=128, ch_mult=(1, 2, 4, 8), dropout=0.0, num_res_blocks=2, resamp_with_conv=True, resolution=args.resolution, ) noise_scheduler = DDPMScheduler(timesteps=1000) optimizer = torch.optim.Adam(model.parameters(), lr=args.lr) augmentations = Compose( [ Resize(args.resolution, interpolation=InterpolationMode.BILINEAR), CenterCrop(args.resolution), RandomHorizontalFlip(), ToTensor(), Lambda(lambda x: x * 2 - 1), ] ) dataset = load_dataset(args.dataset, split="train") def transforms(examples): images = [augmentations(image.convert("RGB")) for image in examples["image"]] return {"input": images} dataset.set_transform(transforms) train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.batch_size, shuffle=True) lr_scheduler = get_linear_schedule_with_warmup( optimizer=optimizer, num_warmup_steps=args.warmup_steps, num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps, ) model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) for epoch in range(args.num_epochs): model.train() with tqdm(total=len(train_dataloader), unit="ba") as pbar: pbar.set_description(f"Epoch {epoch}") for step, batch in enumerate(train_dataloader): clean_images = batch["input"] noisy_images = torch.empty_like(clean_images) noise_samples = torch.empty_like(clean_images) bsz = clean_images.shape[0] timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_images.device).long() for idx in range(bsz): noise = torch.randn(clean_images.shape[1:]).to(clean_images.device) noise_samples[idx] = noise noisy_images[idx] = noise_scheduler.forward_step(clean_images[idx], noise, timesteps[idx]) if step % args.gradient_accumulation_steps != 0: with accelerator.no_sync(model): output = model(noisy_images, timesteps) # predict the noise residual loss = F.mse_loss(output, noise_samples) accelerator.backward(loss) else: output = model(noisy_images, timesteps) # predict the noise residual loss = F.mse_loss(output, noise_samples) accelerator.backward(loss) torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() optimizer.zero_grad() pbar.update(1) pbar.set_postfix(loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"]) optimizer.step() # Generate a sample image for visual inspection torch.distributed.barrier() if args.local_rank in [-1, 0]: model.eval() with torch.no_grad(): if isinstance(model, torch.nn.parallel.DistributedDataParallel): pipeline = DDPM(unet=model.module, noise_scheduler=noise_scheduler) else: pipeline = DDPM(unet=model, noise_scheduler=noise_scheduler) pipeline.save_pretrained(args.output_path) generator = torch.manual_seed(0) # run pipeline in inference (sample random noise and denoise) image = pipeline(generator=generator) # process image to PIL image_processed = image.cpu().permute(0, 2, 3, 1) image_processed = (image_processed + 1.0) * 127.5 image_processed = image_processed.type(torch.uint8).numpy() image_pil = PIL.Image.fromarray(image_processed[0]) # save image test_dir = os.path.join(args.output_path, "test_samples") os.makedirs(test_dir, exist_ok=True) image_pil.save(f"{test_dir}/{epoch}.png") torch.distributed.barrier() if __name__ == "__main__": parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument("--local_rank", type=int) parser.add_argument("--dataset", type=str, default="huggan/flowers-102-categories") parser.add_argument("--resolution", type=int, default=64) parser.add_argument("--output_path", type=str, default="ddpm-model") parser.add_argument("--batch_size", type=int, default=16) parser.add_argument("--num_epochs", type=int, default=100) parser.add_argument("--gradient_accumulation_steps", type=int, default=1) parser.add_argument("--lr", type=float, default=1e-4) parser.add_argument("--warmup_steps", type=int, default=500) parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank main(args)