# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch import tqdm from ..pipeline_utils import DiffusionPipeline class PNDM(DiffusionPipeline): def __init__(self, unet, noise_scheduler): super().__init__() noise_scheduler = noise_scheduler.set_format("pt") self.register_modules(unet=unet, noise_scheduler=noise_scheduler) def __call__(self, batch_size=1, generator=None, torch_device=None, num_inference_steps=50): # eta corresponds to η in paper and should be between [0, 1] if torch_device is None: torch_device = "cuda" if torch.cuda.is_available() else "cpu" num_trained_timesteps = self.noise_scheduler.timesteps inference_step_times = range(0, num_trained_timesteps, num_trained_timesteps // num_inference_steps) self.unet.to(torch_device) # Sample gaussian noise to begin loop image = torch.randn( (batch_size, self.unet.in_channels, self.unet.resolution, self.unet.resolution), generator=generator, ) image = image.to(torch_device) seq = list(inference_step_times) seq_next = [-1] + list(seq[:-1]) model = self.unet warmup_steps = [len(seq) - (i // 4 + 1) for i in range(3 * 4)] ets = [] prev_image = image for i, step_idx in enumerate(warmup_steps): i = seq[step_idx] j = seq_next[step_idx] t = (torch.ones(image.shape[0]) * i) t_next = (torch.ones(image.shape[0]) * j) residual = model(image.to("cuda"), t.to("cuda")) residual = residual.to("cpu") image = image.to("cpu") image = self.noise_scheduler.transfer(prev_image.to("cpu"), t_list[0], t_list[1], residual) if i % 4 == 0: ets.append(residual) prev_image = image for ets = [] step_idx = len(seq) - 1 while step_idx >= 0: i = seq[step_idx] j = seq_next[step_idx] t = (torch.ones(image.shape[0]) * i) t_next = (torch.ones(image.shape[0]) * j) residual = model(image.to("cuda"), t.to("cuda")) residual = residual.to("cpu") t_list = [t, (t+t_next)/2, t_next] ets.append(residual) if len(ets) <= 3: image = image.to("cpu") x_2 = self.noise_scheduler.transfer(image.to("cpu"), t_list[0], t_list[1], residual) e_2 = model(x_2.to("cuda"), t_list[1].to("cuda")).to("cpu") x_3 = self.noise_scheduler.transfer(image, t_list[0], t_list[1], e_2) e_3 = model(x_3.to("cuda"), t_list[1].to("cuda")).to("cpu") x_4 = self.noise_scheduler.transfer(image, t_list[0], t_list[2], e_3) e_4 = model(x_4.to("cuda"), t_list[2].to("cuda")).to("cpu") residual = (1 / 6) * (residual + 2 * e_2 + 2 * e_3 + e_4) else: residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4]) img_next = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual) image = img_next step_idx = step_idx - 1 # if len(prev_noises) in [1, 2]: # t = (t + t_next) / 2 # elif len(prev_noises) == 3: # t = t_next / 2 # if len(prev_noises) == 0: # ets.append(residual) # # if len(ets) > 3: # residual = (1 / 24) * (55 * ets[-1] - 59 * ets[-2] + 37 * ets[-3] - 9 * ets[-4]) # step_idx = step_idx - 1 # elif len(ets) <= 3 and len(prev_noises) == 3: # residual = (1 / 6) * (prev_noises[-3] + 2 * prev_noises[-2] + 2 * prev_noises[-1] + residual) # prev_noises = [] # step_idx = step_idx - 1 # elif len(ets) <= 3 and len(prev_noises) < 3: # prev_noises.append(residual) # if len(prev_noises) < 2: # t_next = (t + t_next) / 2 # # image = self.noise_scheduler.transfer(image.to("cpu"), t, t_next, residual) return image # See formulas (12) and (16) of DDIM paper https://arxiv.org/pdf/2010.02502.pdf # Ideally, read DDIM paper in-detail understanding # Notation ( -> # - pred_noise_t -> e_theta(x_t, t) # - pred_original_image -> f_theta(x_t, t) or x_0 # - std_dev_t -> sigma_t # - eta -> η # - pred_image_direction -> "direction pointingc to x_t" # - pred_prev_image -> "x_t-1" # for t in tqdm.tqdm(reversed(range(num_inference_steps)), total=num_inference_steps): # 1. predict noise residual # with torch.no_grad(): # residual = self.unet(image, inference_step_times[t]) # # 2. predict previous mean of image x_t-1 # pred_prev_image = self.noise_scheduler.step(residual, image, t, num_inference_steps, eta) # # 3. optionally sample variance # variance = 0 # if eta > 0: # noise = torch.randn(image.shape, generator=generator).to(image.device) # variance = self.noise_scheduler.get_variance(t, num_inference_steps).sqrt() * eta * noise # # 4. set current image to prev_image: x_t -> x_t-1 # image = pred_prev_image + variance