# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import unittest git_repo_path = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path check_dummies.PATH_TO_DIFFUSERS = os.path.join(git_repo_path, "src", "diffusers") class CheckDummiesTester(unittest.TestCase): def test_find_backend(self): simple_backend = find_backend(" if not is_torch_available():") self.assertEqual(simple_backend, "torch") # backend_with_underscore = find_backend(" if not is_tensorflow_text_available():") # self.assertEqual(backend_with_underscore, "tensorflow_text") double_backend = find_backend(" if not (is_torch_available() and is_transformers_available()):") self.assertEqual(double_backend, "torch_and_transformers") # double_backend_with_underscore = find_backend( # " if not (is_sentencepiece_available() and is_tensorflow_text_available()):" # ) # self.assertEqual(double_backend_with_underscore, "sentencepiece_and_tensorflow_text") triple_backend = find_backend( " if not (is_torch_available() and is_transformers_available() and is_onnx_available()):" ) self.assertEqual(triple_backend, "torch_and_transformers_and_onnx") def test_read_init(self): objects = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn("torch", objects) self.assertIn("torch_and_transformers", objects) self.assertIn("flax_and_transformers", objects) self.assertIn("torch_and_transformers_and_onnx", objects) # Likewise, we can't assert on the exact content of a key self.assertIn("UNet2DModel", objects["torch"]) self.assertIn("FlaxUNet2DConditionModel", objects["flax"]) self.assertIn("StableDiffusionPipeline", objects["torch_and_transformers"]) self.assertIn("FlaxStableDiffusionPipeline", objects["flax_and_transformers"]) self.assertIn("LMSDiscreteScheduler", objects["torch_and_scipy"]) self.assertIn("OnnxStableDiffusionPipeline", objects["torch_and_transformers_and_onnx"]) def test_create_dummy_object(self): dummy_constant = create_dummy_object("CONSTANT", "'torch'") self.assertEqual(dummy_constant, "\nCONSTANT = None\n") dummy_function = create_dummy_object("function", "'torch'") self.assertEqual( dummy_function, "\ndef function(*args, **kwargs):\n requires_backends(function, 'torch')\n" ) expected_dummy_class = """ class FakeClass(metaclass=DummyObject): _backends = 'torch' def __init__(self, *args, **kwargs): requires_backends(self, 'torch') @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, 'torch') @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, 'torch') """ dummy_class = create_dummy_object("FakeClass", "'torch'") self.assertEqual(dummy_class, expected_dummy_class) def test_create_dummy_files(self): expected_dummy_pytorch_file = """# This file is autogenerated by the command `make fix-copies`, do not edit. # flake8: noqa from ..utils import DummyObject, requires_backends CONSTANT = None def function(*args, **kwargs): requires_backends(function, ["torch"]) class FakeClass(metaclass=DummyObject): _backends = ["torch"] def __init__(self, *args, **kwargs): requires_backends(self, ["torch"]) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, ["torch"]) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, ["torch"]) """ dummy_files = create_dummy_files({"torch": ["CONSTANT", "function", "FakeClass"]}) self.assertEqual(dummy_files["torch"], expected_dummy_pytorch_file)