# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers.models.attention import AttentionBlock, SpatialTransformer from diffusers.models.embeddings import get_timestep_embedding from diffusers.models.resnet import Downsample2D, Upsample2D from diffusers.utils import torch_device torch.backends.cuda.matmul.allow_tf32 = False class EmbeddingsTests(unittest.TestCase): def test_timestep_embeddings(self): embedding_dim = 256 timesteps = torch.arange(16) t1 = get_timestep_embedding(timesteps, embedding_dim) # first vector should always be composed only of 0's and 1's assert (t1[0, : embedding_dim // 2] - 0).abs().sum() < 1e-5 assert (t1[0, embedding_dim // 2 :] - 1).abs().sum() < 1e-5 # last element of each vector should be one assert (t1[:, -1] - 1).abs().sum() < 1e-5 # For large embeddings (e.g. 128) the frequency of every vector is higher # than the previous one which means that the gradients of later vectors are # ALWAYS higher than the previous ones grad_mean = np.abs(np.gradient(t1, axis=-1)).mean(axis=1) prev_grad = 0.0 for grad in grad_mean: assert grad > prev_grad prev_grad = grad def test_timestep_defaults(self): embedding_dim = 16 timesteps = torch.arange(10) t1 = get_timestep_embedding(timesteps, embedding_dim) t2 = get_timestep_embedding( timesteps, embedding_dim, flip_sin_to_cos=False, downscale_freq_shift=1, max_period=10_000 ) assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3) def test_timestep_flip_sin_cos(self): embedding_dim = 16 timesteps = torch.arange(10) t1 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=True) t1 = torch.cat([t1[:, embedding_dim // 2 :], t1[:, : embedding_dim // 2]], dim=-1) t2 = get_timestep_embedding(timesteps, embedding_dim, flip_sin_to_cos=False) assert torch.allclose(t1.cpu(), t2.cpu(), 1e-3) def test_timestep_downscale_freq_shift(self): embedding_dim = 16 timesteps = torch.arange(10) t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0) t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1) # get cosine half (vectors that are wrapped into cosine) cosine_half = (t1 - t2)[:, embedding_dim // 2 :] # cosine needs to be negative assert (np.abs((cosine_half <= 0).numpy()) - 1).sum() < 1e-5 def test_sinoid_embeddings_hardcoded(self): embedding_dim = 64 timesteps = torch.arange(128) # standard unet, score_vde t1 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=1, flip_sin_to_cos=False) # glide, ldm t2 = get_timestep_embedding(timesteps, embedding_dim, downscale_freq_shift=0, flip_sin_to_cos=True) # grad-tts t3 = get_timestep_embedding(timesteps, embedding_dim, scale=1000) assert torch.allclose( t1[23:26, 47:50].flatten().cpu(), torch.tensor([0.9646, 0.9804, 0.9892, 0.9615, 0.9787, 0.9882, 0.9582, 0.9769, 0.9872]), 1e-3, ) assert torch.allclose( t2[23:26, 47:50].flatten().cpu(), torch.tensor([0.3019, 0.2280, 0.1716, 0.3146, 0.2377, 0.1790, 0.3272, 0.2474, 0.1864]), 1e-3, ) assert torch.allclose( t3[23:26, 47:50].flatten().cpu(), torch.tensor([-0.9801, -0.9464, -0.9349, -0.3952, 0.8887, -0.9709, 0.5299, -0.2853, -0.9927]), 1e-3, ) class Upsample2DBlockTests(unittest.TestCase): def test_upsample_default(self): torch.manual_seed(0) sample = torch.randn(1, 32, 32, 32) upsample = Upsample2D(channels=32, use_conv=False) with torch.no_grad(): upsampled = upsample(sample) assert upsampled.shape == (1, 32, 64, 64) output_slice = upsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([-0.2173, -1.2079, -1.2079, 0.2952, 1.1254, 1.1254, 0.2952, 1.1254, 1.1254]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_upsample_with_conv(self): torch.manual_seed(0) sample = torch.randn(1, 32, 32, 32) upsample = Upsample2D(channels=32, use_conv=True) with torch.no_grad(): upsampled = upsample(sample) assert upsampled.shape == (1, 32, 64, 64) output_slice = upsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([0.7145, 1.3773, 0.3492, 0.8448, 1.0839, -0.3341, 0.5956, 0.1250, -0.4841]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_upsample_with_conv_out_dim(self): torch.manual_seed(0) sample = torch.randn(1, 32, 32, 32) upsample = Upsample2D(channels=32, use_conv=True, out_channels=64) with torch.no_grad(): upsampled = upsample(sample) assert upsampled.shape == (1, 64, 64, 64) output_slice = upsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([0.2703, 0.1656, -0.2538, -0.0553, -0.2984, 0.1044, 0.1155, 0.2579, 0.7755]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_upsample_with_transpose(self): torch.manual_seed(0) sample = torch.randn(1, 32, 32, 32) upsample = Upsample2D(channels=32, use_conv=False, use_conv_transpose=True) with torch.no_grad(): upsampled = upsample(sample) assert upsampled.shape == (1, 32, 64, 64) output_slice = upsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([-0.3028, -0.1582, 0.0071, 0.0350, -0.4799, -0.1139, 0.1056, -0.1153, -0.1046]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) class Downsample2DBlockTests(unittest.TestCase): def test_downsample_default(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64) downsample = Downsample2D(channels=32, use_conv=False) with torch.no_grad(): downsampled = downsample(sample) assert downsampled.shape == (1, 32, 32, 32) output_slice = downsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([-0.0513, -0.3889, 0.0640, 0.0836, -0.5460, -0.0341, -0.0169, -0.6967, 0.1179]) max_diff = (output_slice.flatten() - expected_slice).abs().sum().item() assert max_diff <= 1e-3 # assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-1) def test_downsample_with_conv(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64) downsample = Downsample2D(channels=32, use_conv=True) with torch.no_grad(): downsampled = downsample(sample) assert downsampled.shape == (1, 32, 32, 32) output_slice = downsampled[0, -1, -3:, -3:] expected_slice = torch.tensor( [0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913], ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_downsample_with_conv_pad1(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64) downsample = Downsample2D(channels=32, use_conv=True, padding=1) with torch.no_grad(): downsampled = downsample(sample) assert downsampled.shape == (1, 32, 32, 32) output_slice = downsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([0.9267, 0.5878, 0.3337, 1.2321, -0.1191, -0.3984, -0.7532, -0.0715, -0.3913]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_downsample_with_conv_out_dim(self): torch.manual_seed(0) sample = torch.randn(1, 32, 64, 64) downsample = Downsample2D(channels=32, use_conv=True, out_channels=16) with torch.no_grad(): downsampled = downsample(sample) assert downsampled.shape == (1, 16, 32, 32) output_slice = downsampled[0, -1, -3:, -3:] expected_slice = torch.tensor([-0.6586, 0.5985, 0.0721, 0.1256, -0.1492, 0.4436, -0.2544, 0.5021, 1.1522]) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) class AttentionBlockTests(unittest.TestCase): @unittest.skipIf( torch_device == "mps", "Matmul crashes on MPS, see https://github.com/pytorch/pytorch/issues/84039" ) def test_attention_block_default(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) attentionBlock = AttentionBlock( channels=32, num_head_channels=1, rescale_output_factor=1.0, eps=1e-6, num_groups=32, ).to(torch_device) with torch.no_grad(): attention_scores = attentionBlock(sample) assert attention_scores.shape == (1, 32, 64, 64) output_slice = attention_scores[0, -1, -3:, -3:] expected_slice = torch.tensor( [-1.4975, -0.0038, -0.7847, -1.4567, 1.1220, -0.8962, -1.7394, 1.1319, -0.5427], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_attention_block_sd(self): # This version uses SD params and is compatible with mps torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) sample = torch.randn(1, 512, 64, 64).to(torch_device) attentionBlock = AttentionBlock( channels=512, rescale_output_factor=1.0, eps=1e-6, num_groups=32, ).to(torch_device) with torch.no_grad(): attention_scores = attentionBlock(sample) assert attention_scores.shape == (1, 512, 64, 64) output_slice = attention_scores[0, -1, -3:, -3:] expected_slice = torch.tensor( [-0.6621, -0.0156, -3.2766, 0.8025, -0.8609, 0.2820, 0.0905, -1.1179, -3.2126], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) class SpatialTransformerTests(unittest.TestCase): def test_spatial_transformer_default(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) spatial_transformer_block = SpatialTransformer( in_channels=32, n_heads=1, d_head=32, dropout=0.0, context_dim=None, ).to(torch_device) with torch.no_grad(): attention_scores = spatial_transformer_block(sample) assert attention_scores.shape == (1, 32, 64, 64) output_slice = attention_scores[0, -1, -3:, -3:] expected_slice = torch.tensor( [-1.2447, -0.0137, -0.9559, -1.5223, 0.6991, -1.0126, -2.0974, 0.8921, -1.0201], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_spatial_transformer_context_dim(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) sample = torch.randn(1, 64, 64, 64).to(torch_device) spatial_transformer_block = SpatialTransformer( in_channels=64, n_heads=2, d_head=32, dropout=0.0, context_dim=64, ).to(torch_device) with torch.no_grad(): context = torch.randn(1, 4, 64).to(torch_device) attention_scores = spatial_transformer_block(sample, context) assert attention_scores.shape == (1, 64, 64, 64) output_slice = attention_scores[0, -1, -3:, -3:] expected_slice = torch.tensor( [-0.2555, -0.8877, -2.4739, -2.2251, 1.2714, 0.0807, -0.4161, -1.6408, -0.0471], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3) def test_spatial_transformer_dropout(self): torch.manual_seed(0) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0) sample = torch.randn(1, 32, 64, 64).to(torch_device) spatial_transformer_block = ( SpatialTransformer( in_channels=32, n_heads=2, d_head=16, dropout=0.3, context_dim=None, ) .to(torch_device) .eval() ) with torch.no_grad(): attention_scores = spatial_transformer_block(sample) assert attention_scores.shape == (1, 32, 64, 64) output_slice = attention_scores[0, -1, -3:, -3:] expected_slice = torch.tensor( [-1.2448, -0.0190, -0.9471, -1.5140, 0.7069, -1.0144, -2.1077, 0.9099, -1.0091], device=torch_device ) assert torch.allclose(output_slice.flatten(), expected_slice, atol=1e-3)