# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import gc import unittest import torch from diffusers import AutoencoderKL from diffusers.modeling_utils import ModelMixin from diffusers.utils import floats_tensor, load_numpy, require_torch_gpu, slow, torch_all_close, torch_device from parameterized import parameterized from ..test_modeling_common import ModelTesterMixin torch.backends.cuda.matmul.allow_tf32 = False class AutoencoderKLTests(ModelTesterMixin, unittest.TestCase): model_class = AutoencoderKL @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) return {"sample": image} @property def input_shape(self): return (3, 32, 32) @property def output_shape(self): return (3, 32, 32) def prepare_init_args_and_inputs_for_common(self): init_dict = { "block_out_channels": [32, 64], "in_channels": 3, "out_channels": 3, "down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"], "up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"], "latent_channels": 4, } inputs_dict = self.dummy_input return init_dict, inputs_dict def test_forward_signature(self): pass def test_training(self): pass def test_from_pretrained_hub(self): model, loading_info = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy", output_loading_info=True) self.assertIsNotNone(model) self.assertEqual(len(loading_info["missing_keys"]), 0) model.to(torch_device) image = model(**self.dummy_input) assert image is not None, "Make sure output is not None" def test_output_pretrained(self): model = AutoencoderKL.from_pretrained("fusing/autoencoder-kl-dummy") model = model.to(torch_device) model.eval() # One-time warmup pass (see #372) if torch_device == "mps" and isinstance(model, ModelMixin): image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) image = image.to(torch_device) with torch.no_grad(): _ = model(image, sample_posterior=True).sample generator = torch.manual_seed(0) else: generator = torch.Generator(device=torch_device).manual_seed(0) image = torch.randn( 1, model.config.in_channels, model.config.sample_size, model.config.sample_size, generator=torch.manual_seed(0), ) image = image.to(torch_device) with torch.no_grad(): output = model(image, sample_posterior=True, generator=generator).sample output_slice = output[0, -1, -3:, -3:].flatten().cpu() # Since the VAE Gaussian prior's generator is seeded on the appropriate device, # the expected output slices are not the same for CPU and GPU. if torch_device == "mps": expected_output_slice = torch.tensor( [ -4.0078e-01, -3.8323e-04, -1.2681e-01, -1.1462e-01, 2.0095e-01, 1.0893e-01, -8.8247e-02, -3.0361e-01, -9.8644e-03, ] ) elif torch_device == "cpu": expected_output_slice = torch.tensor( [-0.1352, 0.0878, 0.0419, -0.0818, -0.1069, 0.0688, -0.1458, -0.4446, -0.0026] ) else: expected_output_slice = torch.tensor( [-0.2421, 0.4642, 0.2507, -0.0438, 0.0682, 0.3160, -0.2018, -0.0727, 0.2485] ) self.assertTrue(torch_all_close(output_slice, expected_output_slice, rtol=1e-2)) @slow class AutoencoderKLIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def get_sd_image(self, seed=0, shape=(4, 3, 512, 512), fp16=False): dtype = torch.float16 if fp16 else torch.float32 image = torch.from_numpy(load_numpy(self.get_file_format(seed, shape))).to(torch_device).to(dtype) return image def get_sd_vae_model(self, model_id="CompVis/stable-diffusion-v1-4", fp16=False): revision = "fp16" if fp16 else None torch_dtype = torch.float16 if fp16 else torch.float32 model = AutoencoderKL.from_pretrained( model_id, subfolder="vae", torch_dtype=torch_dtype, revision=revision, device_map="auto" ) model.to(torch_device).eval() return model def get_generator(self, seed=0): return torch.Generator(device=torch_device).manual_seed(seed) @parameterized.expand( [ # fmt: off [33, [-0.1603, 0.9878, -0.0495, -0.0790, -0.2709, 0.8375, -0.2060, -0.0824]], [47, [-0.2376, 0.1168, 0.1332, -0.4840, -0.2508, -0.0791, -0.0493, -0.4089]], # fmt: on ] ) def test_stable_diffusion(self, seed, expected_slice): model = self.get_sd_vae_model() image = self.get_sd_image(seed) generator = self.get_generator(seed) with torch.no_grad(): sample = model(image, generator=generator, sample_posterior=True).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [33, [-0.0513, 0.0289, 1.3799, 0.2166, -0.2573, -0.0871, 0.5103, -0.0999]], [47, [-0.4128, -0.1320, -0.3704, 0.1965, -0.4116, -0.2332, -0.3340, 0.2247]], # fmt: on ] ) @require_torch_gpu def test_stable_diffusion_fp16(self, seed, expected_slice): model = self.get_sd_vae_model(fp16=True) image = self.get_sd_image(seed, fp16=True) generator = self.get_generator(seed) with torch.no_grad(): sample = model(image, generator=generator, sample_posterior=True).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-2) @parameterized.expand( [ # fmt: off [33, [-0.1609, 0.9866, -0.0487, -0.0777, -0.2716, 0.8368, -0.2055, -0.0814]], [47, [-0.2377, 0.1147, 0.1333, -0.4841, -0.2506, -0.0805, -0.0491, -0.4085]], # fmt: on ] ) def test_stable_diffusion_mode(self, seed, expected_slice): model = self.get_sd_vae_model() image = self.get_sd_image(seed) with torch.no_grad(): sample = model(image).sample assert sample.shape == image.shape output_slice = sample[-1, -2:, -2:, :2].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [13, [-0.2051, -0.1803, -0.2311, -0.2114, -0.3292, -0.3574, -0.2953, -0.3323]], [37, [-0.2632, -0.2625, -0.2199, -0.2741, -0.4539, -0.4990, -0.3720, -0.4925]], # fmt: on ] ) @require_torch_gpu def test_stable_diffusion_decode(self, seed, expected_slice): model = self.get_sd_vae_model() encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64)) with torch.no_grad(): sample = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] output_slice = sample[-1, -2:, :2, -2:].flatten().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3) @parameterized.expand( [ # fmt: off [27, [-0.0369, 0.0207, -0.0776, -0.0682, -0.1747, -0.1930, -0.1465, -0.2039]], [16, [-0.1628, -0.2134, -0.2747, -0.2642, -0.3774, -0.4404, -0.3687, -0.4277]], # fmt: on ] ) def test_stable_diffusion_decode_fp16(self, seed, expected_slice): model = self.get_sd_vae_model(fp16=True) encoding = self.get_sd_image(seed, shape=(3, 4, 64, 64), fp16=True) with torch.no_grad(): sample = model.decode(encoding).sample assert list(sample.shape) == [3, 3, 512, 512] output_slice = sample[-1, -2:, :2, -2:].flatten().float().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=5e-3) @parameterized.expand( [ # fmt: off [33, [-0.3001, 0.0918, -2.6984, -3.9720, -3.2099, -5.0353, 1.7338, -0.2065, 3.4267]], [47, [-1.5030, -4.3871, -6.0355, -9.1157, -1.6661, -2.7853, 2.1607, -5.0823, 2.5633]], # fmt: on ] ) def test_stable_diffusion_encode_sample(self, seed, expected_slice): model = self.get_sd_vae_model() image = self.get_sd_image(seed) generator = self.get_generator(seed) with torch.no_grad(): dist = model.encode(image).latent_dist sample = dist.sample(generator=generator) assert list(sample.shape) == [image.shape[0], 4] + [i // 8 for i in image.shape[2:]] output_slice = sample[0, -1, -3:, -3:].flatten().cpu() expected_output_slice = torch.tensor(expected_slice) assert torch_all_close(output_slice, expected_output_slice, atol=1e-3)