import argparse import math import os from pathlib import Path from typing import Optional import torch import torch.nn.functional as F from accelerate import Accelerator from accelerate.logging import get_logger from datasets import load_dataset from diffusers import DDPMPipeline, DDPMScheduler, UNet2DModel from diffusers.optimization import get_scheduler from diffusers.training_utils import EMAModel from huggingface_hub import HfFolder, Repository, whoami from torchvision.transforms import ( CenterCrop, Compose, InterpolationMode, Normalize, RandomHorizontalFlip, Resize, ToTensor, ) from tqdm.auto import tqdm logger = get_logger(__name__) def parse_args(): parser = argparse.ArgumentParser(description="Simple example of a training script.") parser.add_argument( "--dataset_name", type=str, default=None, help=( "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," " or to a folder containing files that HF Datasets can understand." ), ) parser.add_argument( "--dataset_config_name", type=str, default=None, help="The config of the Dataset, leave as None if there's only one config.", ) parser.add_argument( "--train_data_dir", type=str, default=None, help=( "A folder containing the training data. Folder contents must follow the structure described in" " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." ), ) parser.add_argument( "--output_dir", type=str, default="ddpm-model-64", help="The output directory where the model predictions and checkpoints will be written.", ) parser.add_argument("--overwrite_output_dir", action="store_true") parser.add_argument( "--cache_dir", type=str, default=None, help="The directory where the downloaded models and datasets will be stored.", ) parser.add_argument( "--resolution", type=int, default=64, help=( "The resolution for input images, all the images in the train/validation dataset will be resized to this" " resolution" ), ) parser.add_argument( "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." ) parser.add_argument( "--eval_batch_size", type=int, default=16, help="The number of images to generate for evaluation." ) parser.add_argument( "--dataloader_num_workers", type=int, default=0, help=( "The number of subprocesses to use for data loading. 0 means that the data will be loaded in the main" " process." ), ) parser.add_argument("--num_epochs", type=int, default=100) parser.add_argument("--save_images_epochs", type=int, default=10, help="How often to save images during training.") parser.add_argument( "--save_model_epochs", type=int, default=10, help="How often to save the model during training." ) parser.add_argument( "--gradient_accumulation_steps", type=int, default=1, help="Number of updates steps to accumulate before performing a backward/update pass.", ) parser.add_argument( "--learning_rate", type=float, default=1e-4, help="Initial learning rate (after the potential warmup period) to use.", ) parser.add_argument( "--lr_scheduler", type=str, default="cosine", help=( 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' ' "constant", "constant_with_warmup"]' ), ) parser.add_argument( "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." ) parser.add_argument("--adam_beta1", type=float, default=0.95, help="The beta1 parameter for the Adam optimizer.") parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") parser.add_argument( "--adam_weight_decay", type=float, default=1e-6, help="Weight decay magnitude for the Adam optimizer." ) parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer.") parser.add_argument( "--use_ema", action="store_true", default=True, help="Whether to use Exponential Moving Average for the final model weights.", ) parser.add_argument("--ema_inv_gamma", type=float, default=1.0, help="The inverse gamma value for the EMA decay.") parser.add_argument("--ema_power", type=float, default=3 / 4, help="The power value for the EMA decay.") parser.add_argument("--ema_max_decay", type=float, default=0.9999, help="The maximum decay magnitude for EMA.") parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") parser.add_argument( "--hub_model_id", type=str, default=None, help="The name of the repository to keep in sync with the local `output_dir`.", ) parser.add_argument( "--hub_private_repo", action="store_true", help="Whether or not to create a private repository." ) parser.add_argument( "--logging_dir", type=str, default="logs", help=( "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." ), ) parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") parser.add_argument( "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help=( "Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." ), ) args = parser.parse_args() env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) if env_local_rank != -1 and env_local_rank != args.local_rank: args.local_rank = env_local_rank if args.dataset_name is None and args.train_data_dir is None: raise ValueError("You must specify either a dataset name from the hub or a train data directory.") return args def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): if token is None: token = HfFolder.get_token() if organization is None: username = whoami(token)["name"] return f"{username}/{model_id}" else: return f"{organization}/{model_id}" def main(args): logging_dir = os.path.join(args.output_dir, args.logging_dir) accelerator = Accelerator( gradient_accumulation_steps=args.gradient_accumulation_steps, mixed_precision=args.mixed_precision, log_with="tensorboard", logging_dir=logging_dir, ) model = UNet2DModel( sample_size=args.resolution, in_channels=3, out_channels=3, layers_per_block=2, block_out_channels=(128, 128, 256, 256, 512, 512), down_block_types=( "DownBlock2D", "DownBlock2D", "DownBlock2D", "DownBlock2D", "AttnDownBlock2D", "DownBlock2D", ), up_block_types=( "UpBlock2D", "AttnUpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", "UpBlock2D", ), ) noise_scheduler = DDPMScheduler(num_train_timesteps=1000) optimizer = torch.optim.AdamW( model.parameters(), lr=args.learning_rate, betas=(args.adam_beta1, args.adam_beta2), weight_decay=args.adam_weight_decay, eps=args.adam_epsilon, ) augmentations = Compose( [ Resize(args.resolution, interpolation=InterpolationMode.BILINEAR), CenterCrop(args.resolution), RandomHorizontalFlip(), ToTensor(), Normalize([0.5], [0.5]), ] ) if args.dataset_name is not None: dataset = load_dataset( args.dataset_name, args.dataset_config_name, cache_dir=args.cache_dir, split="train", ) else: dataset = load_dataset("imagefolder", data_dir=args.train_data_dir, cache_dir=args.cache_dir, split="train") def transforms(examples): images = [augmentations(image.convert("RGB")) for image in examples["image"]] return {"input": images} dataset.set_transform(transforms) train_dataloader = torch.utils.data.DataLoader( dataset, batch_size=args.train_batch_size, shuffle=True, num_workers=args.dataloader_num_workers ) lr_scheduler = get_scheduler( args.lr_scheduler, optimizer=optimizer, num_warmup_steps=args.lr_warmup_steps, num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps, ) model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( model, optimizer, train_dataloader, lr_scheduler ) num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay) # Handle the repository creation if accelerator.is_main_process: if args.push_to_hub: if args.hub_model_id is None: repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) else: repo_name = args.hub_model_id repo = Repository(args.output_dir, clone_from=repo_name) with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: if "step_*" not in gitignore: gitignore.write("step_*\n") if "epoch_*" not in gitignore: gitignore.write("epoch_*\n") elif args.output_dir is not None: os.makedirs(args.output_dir, exist_ok=True) if accelerator.is_main_process: run = os.path.split(__file__)[-1].split(".")[0] accelerator.init_trackers(run) global_step = 0 for epoch in range(args.num_epochs): model.train() progress_bar = tqdm(total=num_update_steps_per_epoch, disable=not accelerator.is_local_main_process) progress_bar.set_description(f"Epoch {epoch}") for step, batch in enumerate(train_dataloader): clean_images = batch["input"] # Sample noise that we'll add to the images noise = torch.randn(clean_images.shape).to(clean_images.device) bsz = clean_images.shape[0] # Sample a random timestep for each image timesteps = torch.randint( 0, noise_scheduler.config.num_train_timesteps, (bsz,), device=clean_images.device ).long() # Add noise to the clean images according to the noise magnitude at each timestep # (this is the forward diffusion process) noisy_images = noise_scheduler.add_noise(clean_images, noise, timesteps) with accelerator.accumulate(model): # Predict the noise residual noise_pred = model(noisy_images, timesteps).sample loss = F.mse_loss(noise_pred, noise) accelerator.backward(loss) if accelerator.sync_gradients: accelerator.clip_grad_norm_(model.parameters(), 1.0) optimizer.step() lr_scheduler.step() if args.use_ema: ema_model.step(model) optimizer.zero_grad() # Checks if the accelerator has performed an optimization step behind the scenes if accelerator.sync_gradients: progress_bar.update(1) global_step += 1 logs = {"loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0], "step": global_step} if args.use_ema: logs["ema_decay"] = ema_model.decay progress_bar.set_postfix(**logs) accelerator.log(logs, step=global_step) progress_bar.close() accelerator.wait_for_everyone() # Generate sample images for visual inspection if accelerator.is_main_process: if epoch % args.save_images_epochs == 0 or epoch == args.num_epochs - 1: pipeline = DDPMPipeline( unet=accelerator.unwrap_model(ema_model.averaged_model if args.use_ema else model), scheduler=noise_scheduler, ) generator = torch.manual_seed(0) # run pipeline in inference (sample random noise and denoise) images = pipeline(generator=generator, batch_size=args.eval_batch_size, output_type="numpy").images # denormalize the images and save to tensorboard images_processed = (images * 255).round().astype("uint8") accelerator.trackers[0].writer.add_images( "test_samples", images_processed.transpose(0, 3, 1, 2), epoch ) if epoch % args.save_model_epochs == 0 or epoch == args.num_epochs - 1: # save the model pipeline.save_pretrained(args.output_dir) if args.push_to_hub: repo.push_to_hub(commit_message=f"Epoch {epoch}", blocking=False) accelerator.wait_for_everyone() accelerator.end_training() if __name__ == "__main__": args = parse_args() main(args)