# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import shutil from pathlib import Path import onnx import torch from packaging import version from torch.onnx import export from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def onnx_export( model, model_args: tuple, output_path: Path, ordered_input_names, output_names, dynamic_axes, opset, use_external_data_format=False, ): output_path.parent.mkdir(parents=True, exist_ok=True) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( model, model_args, f=output_path.as_posix(), input_names=ordered_input_names, output_names=output_names, dynamic_axes=dynamic_axes, do_constant_folding=True, use_external_data_format=use_external_data_format, enable_onnx_checker=True, opset_version=opset, ) else: export( model, model_args, f=output_path.as_posix(), input_names=ordered_input_names, output_names=output_names, dynamic_axes=dynamic_axes, do_constant_folding=True, opset_version=opset, ) @torch.no_grad() def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False): dtype = torch.float16 if fp16 else torch.float32 if fp16 and torch.cuda.is_available(): device = "cuda" elif fp16 and not torch.cuda.is_available(): raise ValueError("`float16` model export is only supported on GPUs with CUDA") else: device = "cpu" pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device) output_path = Path(output_path) # TEXT ENCODER num_tokens = pipeline.text_encoder.config.max_position_embeddings text_hidden_size = pipeline.text_encoder.config.hidden_size text_input = pipeline.tokenizer( "A sample prompt", padding="max_length", max_length=pipeline.tokenizer.model_max_length, truncation=True, return_tensors="pt", ) onnx_export( pipeline.text_encoder, # casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)), output_path=output_path / "text_encoder" / "model.onnx", ordered_input_names=["input_ids"], output_names=["last_hidden_state", "pooler_output"], dynamic_axes={ "input_ids": {0: "batch", 1: "sequence"}, }, opset=opset, ) del pipeline.text_encoder # UNET unet_in_channels = pipeline.unet.config.in_channels unet_sample_size = pipeline.unet.config.sample_size unet_path = output_path / "unet" / "model.onnx" onnx_export( pipeline.unet, model_args=( torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), torch.randn(2).to(device=device, dtype=dtype), torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype), False, ), output_path=unet_path, ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"], output_names=["out_sample"], # has to be different from "sample" for correct tracing dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "timestep": {0: "batch"}, "encoder_hidden_states": {0: "batch", 1: "sequence"}, }, opset=opset, use_external_data_format=True, # UNet is > 2GB, so the weights need to be split ) unet_model_path = str(unet_path.absolute().as_posix()) unet_dir = os.path.dirname(unet_model_path) unet = onnx.load(unet_model_path) # clean up existing tensor files shutil.rmtree(unet_dir) os.mkdir(unet_dir) # collate external tensor files into one onnx.save_model( unet, unet_model_path, save_as_external_data=True, all_tensors_to_one_file=True, location="weights.pb", convert_attribute=False, ) del pipeline.unet # VAE ENCODER vae_encoder = pipeline.vae vae_in_channels = vae_encoder.config.in_channels vae_sample_size = vae_encoder.config.sample_size # need to get the raw tensor output (sample) from the encoder vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample() onnx_export( vae_encoder, model_args=( torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype), False, ), output_path=output_path / "vae_encoder" / "model.onnx", ordered_input_names=["sample", "return_dict"], output_names=["latent_sample"], dynamic_axes={ "sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, }, opset=opset, ) # VAE DECODER vae_decoder = pipeline.vae vae_latent_channels = vae_decoder.config.latent_channels vae_out_channels = vae_decoder.config.out_channels # forward only through the decoder part vae_decoder.forward = vae_encoder.decode onnx_export( vae_decoder, model_args=( torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype), False, ), output_path=output_path / "vae_decoder" / "model.onnx", ordered_input_names=["latent_sample", "return_dict"], output_names=["sample"], dynamic_axes={ "latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"}, }, opset=opset, ) del pipeline.vae # SAFETY CHECKER if pipeline.safety_checker is not None: safety_checker = pipeline.safety_checker clip_num_channels = safety_checker.config.vision_config.num_channels clip_image_size = safety_checker.config.vision_config.image_size safety_checker.forward = safety_checker.forward_onnx onnx_export( pipeline.safety_checker, model_args=( torch.randn( 1, clip_num_channels, clip_image_size, clip_image_size, ).to(device=device, dtype=dtype), torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype), ), output_path=output_path / "safety_checker" / "model.onnx", ordered_input_names=["clip_input", "images"], output_names=["out_images", "has_nsfw_concepts"], dynamic_axes={ "clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"}, "images": {0: "batch", 1: "height", 2: "width", 3: "channels"}, }, opset=opset, ) del pipeline.safety_checker safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker") feature_extractor = pipeline.feature_extractor else: safety_checker = None feature_extractor = None onnx_pipeline = OnnxStableDiffusionPipeline( vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"), vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"), text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"), tokenizer=pipeline.tokenizer, unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"), scheduler=pipeline.scheduler, safety_checker=safety_checker, feature_extractor=feature_extractor, requires_safety_checker=safety_checker is not None, ) onnx_pipeline.save_pretrained(output_path) print("ONNX pipeline saved to", output_path) del pipeline del onnx_pipeline _ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider") print("ONNX pipeline is loadable") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=14, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") args = parser.parse_args() convert_models(args.model_path, args.output_path, args.opset, args.fp16)