# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest import torch from diffusers import DDIM, DDPM, DDIMScheduler, DDPMScheduler, LatentDiffusion, UNetModel, PNDM, PNDMScheduler from diffusers.configuration_utils import ConfigMixin from diffusers.pipeline_utils import DiffusionPipeline from diffusers.testing_utils import floats_tensor, slow, torch_device torch.backends.cuda.matmul.allow_tf32 = False class ConfigTester(unittest.TestCase): def test_load_not_from_mixin(self): with self.assertRaises(ValueError): ConfigMixin.from_config("dummy_path") def test_save_load(self): class SampleObject(ConfigMixin): config_name = "config.json" def __init__( self, a=2, b=5, c=(2, 5), d="for diffusion", e=[1, 3], ): self.register(a=a, b=b, c=c, d=d, e=e) obj = SampleObject() config = obj.config assert config["a"] == 2 assert config["b"] == 5 assert config["c"] == (2, 5) assert config["d"] == "for diffusion" assert config["e"] == [1, 3] with tempfile.TemporaryDirectory() as tmpdirname: obj.save_config(tmpdirname) new_obj = SampleObject.from_config(tmpdirname) new_config = new_obj.config assert config.pop("c") == (2, 5) # instantiated as tuple assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json assert config == new_config class ModelTesterMixin(unittest.TestCase): @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes).to(torch_device) time_step = torch.tensor([10]).to(torch_device) return (noise, time_step) def test_from_pretrained_save_pretrained(self): model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32) model.to(torch_device) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = UNetModel.from_pretrained(tmpdirname) new_model.to(torch_device) dummy_input = self.dummy_input image = model(*dummy_input) new_image = new_model(*dummy_input) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" def test_from_pretrained_hub(self): model = UNetModel.from_pretrained("fusing/ddpm_dummy") model.to(torch_device) image = model(*self.dummy_input) assert image is not None, "Make sure output is not None" class PipelineTesterMixin(unittest.TestCase): def test_from_pretrained_save_pretrained(self): # 1. Load models model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32) schedular = DDPMScheduler(timesteps=10) ddpm = DDPM(model, schedular) with tempfile.TemporaryDirectory() as tmpdirname: ddpm.save_pretrained(tmpdirname) new_ddpm = DDPM.from_pretrained(tmpdirname) generator = torch.manual_seed(0) image = ddpm(generator=generator) generator = generator.manual_seed(0) new_image = new_ddpm(generator=generator) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" @slow def test_from_pretrained_hub(self): model_path = "fusing/ddpm-cifar10" ddpm = DDPM.from_pretrained(model_path) ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path) ddpm.noise_scheduler.num_timesteps = 10 ddpm_from_hub.noise_scheduler.num_timesteps = 10 generator = torch.manual_seed(0) image = ddpm(generator=generator) generator = generator.manual_seed(0) new_image = ddpm_from_hub(generator=generator) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" @slow def test_ddpm_cifar10(self): generator = torch.manual_seed(0) model_id = "fusing/ddpm-cifar10" unet = UNetModel.from_pretrained(model_id) noise_scheduler = DDPMScheduler.from_config(model_id) noise_scheduler = noise_scheduler.set_format("pt") ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler) image = ddpm(generator=generator) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ddim_cifar10(self): generator = torch.manual_seed(0) model_id = "fusing/ddpm-cifar10" unet = UNetModel.from_pretrained(model_id) noise_scheduler = DDIMScheduler(tensor_format="pt") ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler) image = ddim(generator=generator, eta=0.0) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor( [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_pndm_cifar10(self): generator = torch.manual_seed(0) model_id = "fusing/ddpm-cifar10" unet = UNetModel.from_pretrained(model_id) noise_scheduler = PNDMScheduler(tensor_format="pt") pndm = PNDM(unet=unet, noise_scheduler=noise_scheduler) image = pndm(generator=generator) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor( [-0.7888, -0.7870, -0.7759, -0.7823, -0.8014, -0.7608, -0.6818, -0.7130, -0.7471] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ldm_text2img(self): model_id = "fusing/latent-diffusion-text2im-large" ldm = LatentDiffusion.from_pretrained(model_id) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = ldm([prompt], generator=generator, num_inference_steps=20) image_slice = image[0, -1, -3:, -3:].cpu() print(image_slice.shape) assert image.shape == (1, 3, 256, 256) expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2