# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import tempfile import unittest from typing import Dict, List, Tuple import numpy as np import torch from diffusers import DDIMScheduler, DDPMScheduler, LMSDiscreteScheduler, PNDMScheduler, ScoreSdeVeScheduler torch.backends.cuda.matmul.allow_tf32 = False class SchedulerCommonTest(unittest.TestCase): scheduler_classes = () forward_default_kwargs = () @property def dummy_sample(self): batch_size = 4 num_channels = 3 height = 8 width = 8 sample = torch.rand((batch_size, num_channels, height, width)) return sample @property def dummy_sample_deter(self): batch_size = 4 num_channels = 3 height = 8 width = 8 num_elems = batch_size * num_channels * height * width sample = torch.arange(num_elems) sample = sample.reshape(num_channels, height, width, batch_size) sample = sample / num_elems sample = sample.permute(3, 0, 1, 2) return sample def get_scheduler_config(self): raise NotImplementedError def dummy_model(self): def model(sample, t, *args): return sample * t / (t + 1) return model def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) new_scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) kwargs.update(forward_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) new_scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps torch.manual_seed(0) output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample torch.manual_seed(0) new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_from_pretrained_save_pretrained(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) new_scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps torch.manual_seed(0) output = scheduler.step(residual, 1, sample, **kwargs).prev_sample torch.manual_seed(0) new_output = new_scheduler.step(residual, 1, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output_0 = scheduler.step(residual, 0, sample, **kwargs).prev_sample output_1 = scheduler.step(residual, 1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_scheduler_outputs_equivalence(self): def set_nan_tensor_to_zero(t): t[t != t] = 0 return t def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( torch.allclose( set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 ), msg=( "Tuple and dict output are not equal. Difference:" f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." ), ) kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps outputs_dict = scheduler.step(residual, 0, sample, **kwargs) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps outputs_tuple = scheduler.step(residual, 0, sample, return_dict=False, **kwargs) recursive_check(outputs_tuple, outputs_dict) class DDPMSchedulerTest(SchedulerCommonTest): scheduler_classes = (DDPMScheduler,) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**kwargs) return config def test_timesteps(self): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_variance_type(self): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=variance) def test_clip_sample(self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=clip_sample) def test_time_indices(self): for t in [0, 500, 999]: self.check_over_forward(time_step=t) def test_variance(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5 def test_full_loop_no_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_trained_timesteps = len(scheduler) model = self.dummy_model() sample = self.dummy_sample_deter generator = torch.manual_seed(0) for t in reversed(range(num_trained_timesteps)): # 1. predict noise residual residual = model(sample, t) # 2. predict previous mean of sample x_t-1 pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance sample = pred_prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 258.9070) < 1e-2 assert abs(result_mean.item() - 0.3374) < 1e-3 class DDIMSchedulerTest(SchedulerCommonTest): scheduler_classes = (DDIMScheduler,) forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50)) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "clip_sample": True, } config.update(**kwargs) return config def full_loop(self, **config): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) num_inference_steps, eta = 10, 0.0 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) for t in scheduler.timesteps: residual = model(sample, t) sample = scheduler.step(residual, t, sample, eta).prev_sample return sample def test_timesteps(self): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_steps_offset(self): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=steps_offset) scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(steps_offset=1) scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(5) assert np.equal(scheduler.timesteps, np.array([801, 601, 401, 201, 1])).all() def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_clip_sample(self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=clip_sample) def test_time_indices(self): for t in [1, 10, 49]: self.check_over_forward(time_step=t) def test_inference_steps(self): for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]): self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) def test_eta(self): for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]): self.check_over_forward(time_step=t, eta=eta) def test_variance(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5 def test_full_loop_no_noise(self): sample = self.full_loop() result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 172.0067) < 1e-2 assert abs(result_mean.item() - 0.223967) < 1e-3 def test_full_loop_with_set_alpha_to_one(self): # We specify different beta, so that the first alpha is 0.99 sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 149.8295) < 1e-2 assert abs(result_mean.item() - 0.1951) < 1e-3 def test_full_loop_with_no_set_alpha_to_one(self): # We specify different beta, so that the first alpha is 0.99 sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 149.0784) < 1e-2 assert abs(result_mean.item() - 0.1941) < 1e-3 class PNDMSchedulerTest(SchedulerCommonTest): scheduler_classes = (PNDMScheduler,) forward_default_kwargs = (("num_inference_steps", 50),) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**kwargs) return config def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals scheduler.ets = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) new_scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals new_scheduler.ets = dummy_past_residuals[:] output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_from_pretrained_save_pretrained(self): pass def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # copy over dummy past residuals (must be after setting timesteps) scheduler.ets = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) # copy over dummy past residuals new_scheduler.set_timesteps(num_inference_steps) # copy over dummy past residual (must be after setting timesteps) new_scheduler.ets = dummy_past_residuals[:] output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def full_loop(self, **config): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_timesteps(num_inference_steps) for i, t in enumerate(scheduler.prk_timesteps): residual = model(sample, t) sample = scheduler.step_prk(residual, t, sample).prev_sample for i, t in enumerate(scheduler.plms_timesteps): residual = model(sample, t) sample = scheduler.step_plms(residual, t, sample).prev_sample return sample def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] scheduler.ets = dummy_past_residuals[:] output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_timesteps(self): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_steps_offset(self): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=steps_offset) scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(steps_offset=1) scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(10) assert np.equal( scheduler.timesteps, np.array([901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]), ).all() def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_time_indices(self): for t in [1, 5, 10]: self.check_over_forward(time_step=t) def test_inference_steps(self): for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): self.check_over_forward(num_inference_steps=num_inference_steps) def test_pow_of_3_inference_steps(self): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 num_inference_steps = 27 for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(num_inference_steps) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(scheduler.prk_timesteps[:2]): sample = scheduler.step_prk(residual, t, sample).prev_sample def test_inference_plms_no_past_residuals(self): with self.assertRaises(ValueError): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample def test_full_loop_no_noise(self): sample = self.full_loop() result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 198.1318) < 1e-2 assert abs(result_mean.item() - 0.2580) < 1e-3 def test_full_loop_with_set_alpha_to_one(self): # We specify different beta, so that the first alpha is 0.99 sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 230.0399) < 1e-2 assert abs(result_mean.item() - 0.2995) < 1e-3 def test_full_loop_with_no_set_alpha_to_one(self): # We specify different beta, so that the first alpha is 0.99 sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 186.9482) < 1e-2 assert abs(result_mean.item() - 0.2434) < 1e-3 class ScoreSdeVeSchedulerTest(unittest.TestCase): # TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration) scheduler_classes = (ScoreSdeVeScheduler,) forward_default_kwargs = () @property def dummy_sample(self): batch_size = 4 num_channels = 3 height = 8 width = 8 sample = torch.rand((batch_size, num_channels, height, width)) return sample @property def dummy_sample_deter(self): batch_size = 4 num_channels = 3 height = 8 width = 8 num_elems = batch_size * num_channels * height * width sample = torch.arange(num_elems) sample = sample.reshape(num_channels, height, width, batch_size) sample = sample / num_elems sample = sample.permute(3, 0, 1, 2) return sample def dummy_model(self): def model(sample, t, *args): return sample * t / (t + 1) return model def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 2000, "snr": 0.15, "sigma_min": 0.01, "sigma_max": 1348, "sampling_eps": 1e-5, } config.update(**kwargs) return config def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) output = scheduler.step_pred( residual, time_step, sample, generator=torch.manual_seed(0), **kwargs ).prev_sample new_output = new_scheduler.step_pred( residual, time_step, sample, generator=torch.manual_seed(0), **kwargs ).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample new_output = new_scheduler.step_correct( residual, sample, generator=torch.manual_seed(0), **kwargs ).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical" def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) kwargs.update(forward_kwargs) for scheduler_class in self.scheduler_classes: sample = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler = scheduler_class.from_config(tmpdirname) output = scheduler.step_pred( residual, time_step, sample, generator=torch.manual_seed(0), **kwargs ).prev_sample new_output = new_scheduler.step_pred( residual, time_step, sample, generator=torch.manual_seed(0), **kwargs ).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample new_output = new_scheduler.step_correct( residual, sample, generator=torch.manual_seed(0), **kwargs ).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical" def test_timesteps(self): for timesteps in [10, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_sigmas(self): for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]): self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max) def test_time_indices(self): for t in [0.1, 0.5, 0.75]: self.check_over_forward(time_step=t) def test_full_loop_no_noise(self): kwargs = dict(self.forward_default_kwargs) scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) num_inference_steps = 3 model = self.dummy_model() sample = self.dummy_sample_deter scheduler.set_sigmas(num_inference_steps) scheduler.set_timesteps(num_inference_steps) generator = torch.manual_seed(0) for i, t in enumerate(scheduler.timesteps): sigma_t = scheduler.sigmas[i] for _ in range(scheduler.config.correct_steps): with torch.no_grad(): model_output = model(sample, sigma_t) sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample with torch.no_grad(): model_output = model(sample, sigma_t) output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs) sample, _ = output.prev_sample, output.prev_sample_mean result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert np.isclose(result_sum.item(), 14372758528.0) assert np.isclose(result_mean.item(), 18714530.0) def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) sample = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): scheduler.set_timesteps(num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) class LMSDiscreteSchedulerTest(SchedulerCommonTest): scheduler_classes = (LMSDiscreteScheduler,) num_inference_steps = 10 def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "trained_betas": None, } config.update(**kwargs) return config def test_timesteps(self): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=schedule) def test_time_indices(self): for t in [0, 500, 800]: self.check_over_forward(time_step=t) def test_full_loop_no_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) scheduler.set_timesteps(self.num_inference_steps) model = self.dummy_model() sample = self.dummy_sample_deter * scheduler.sigmas[0] for i, t in enumerate(scheduler.timesteps): sample = sample / ((scheduler.sigmas[i] ** 2 + 1) ** 0.5) model_output = model(sample, t) output = scheduler.step(model_output, i, sample) sample = output.prev_sample result_sum = torch.sum(torch.abs(sample)) result_mean = torch.mean(torch.abs(sample)) assert abs(result_sum.item() - 1006.370) < 1e-2 assert abs(result_mean.item() - 1.31) < 1e-3