# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import tempfile import numpy as np import torch from diffusers.testing_utils import torch_device from diffusers.training_utils import EMAModel class ModelTesterMixin: def test_from_pretrained_save_pretrained(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = self.model_class.from_pretrained(tmpdirname) new_model.to(torch_device) with torch.no_grad(): image = model(**inputs_dict) if isinstance(image, dict): image = image["sample"] new_image = new_model(**inputs_dict) if isinstance(new_image, dict): new_image = new_image["sample"] max_diff = (image - new_image).abs().sum().item() self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes") def test_determinism(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): first = model(**inputs_dict) if isinstance(first, dict): first = first["sample"] second = model(**inputs_dict) if isinstance(second, dict): second = second["sample"] out_1 = first.cpu().numpy() out_2 = second.cpu().numpy() out_1 = out_1[~np.isnan(out_1)] out_2 = out_2[~np.isnan(out_2)] max_diff = np.amax(np.abs(out_1 - out_2)) self.assertLessEqual(max_diff, 1e-5) def test_output(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() with torch.no_grad(): output = model(**inputs_dict) if isinstance(output, dict): output = output["sample"] self.assertIsNotNone(output) expected_shape = inputs_dict["sample"].shape self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match") def test_forward_signature(self): init_dict, _ = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) signature = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic arg_names = [*signature.parameters.keys()] expected_arg_names = ["sample", "timestep"] self.assertListEqual(arg_names[:2], expected_arg_names) def test_model_from_config(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.eval() # test if the model can be loaded from the config # and has all the expected shape with tempfile.TemporaryDirectory() as tmpdirname: model.save_config(tmpdirname) new_model = self.model_class.from_config(tmpdirname) new_model.to(torch_device) new_model.eval() # check if all paramters shape are the same for param_name in model.state_dict().keys(): param_1 = model.state_dict()[param_name] param_2 = new_model.state_dict()[param_name] self.assertEqual(param_1.shape, param_2.shape) with torch.no_grad(): output_1 = model(**inputs_dict) if isinstance(output_1, dict): output_1 = output_1["sample"] output_2 = new_model(**inputs_dict) if isinstance(output_2, dict): output_2 = output_2["sample"] self.assertEqual(output_1.shape, output_2.shape) def test_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.train() output = model(**inputs_dict) if isinstance(output, dict): output = output["sample"] noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward() def test_ema_training(self): init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common() model = self.model_class(**init_dict) model.to(torch_device) model.train() ema_model = EMAModel(model, device=torch_device) output = model(**inputs_dict) if isinstance(output, dict): output = output["sample"] noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device) loss = torch.nn.functional.mse_loss(output, noise) loss.backward() ema_model.step(model)