import gc import unittest from diffusers import FlaxUNet2DConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow from parameterized import parameterized if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class FlaxUNet2DConditionModelIntegrationTests(unittest.TestCase): def get_file_format(self, seed, shape): return f"gaussian_noise_s={seed}_shape={'_'.join([str(s) for s in shape])}.npy" def tearDown(self): # clean up the VRAM after each test super().tearDown() gc.collect() def get_latents(self, seed=0, shape=(4, 4, 64, 64), fp16=False): dtype = jnp.bfloat16 if fp16 else jnp.float32 image = jnp.array(load_hf_numpy(self.get_file_format(seed, shape)), dtype=dtype) return image def get_unet_model(self, fp16=False, model_id="CompVis/stable-diffusion-v1-4"): dtype = jnp.bfloat16 if fp16 else jnp.float32 revision = "bf16" if fp16 else None model, params = FlaxUNet2DConditionModel.from_pretrained( model_id, subfolder="unet", dtype=dtype, revision=revision ) return model, params def get_encoder_hidden_states(self, seed=0, shape=(4, 77, 768), fp16=False): dtype = jnp.bfloat16 if fp16 else jnp.float32 hidden_states = jnp.array(load_hf_numpy(self.get_file_format(seed, shape)), dtype=dtype) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def test_compvis_sd_v1_4_flax_vs_torch_fp16(self, seed, timestep, expected_slice): model, params = self.get_unet_model(model_id="CompVis/stable-diffusion-v1-4", fp16=True) latents = self.get_latents(seed, fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, fp16=True) sample = model.apply( {"params": params}, latents, jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=encoder_hidden_states, ).sample assert sample.shape == latents.shape output_slice = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())), dtype=jnp.float32) expected_output_slice = jnp.array(expected_slice, dtype=jnp.float32) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(output_slice, expected_output_slice, atol=1e-2) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def test_stabilityai_sd_v2_flax_vs_torch_fp16(self, seed, timestep, expected_slice): model, params = self.get_unet_model(model_id="stabilityai/stable-diffusion-2", fp16=True) latents = self.get_latents(seed, shape=(4, 4, 96, 96), fp16=True) encoder_hidden_states = self.get_encoder_hidden_states(seed, shape=(4, 77, 1024), fp16=True) sample = model.apply( {"params": params}, latents, jnp.array(timestep, dtype=jnp.int32), encoder_hidden_states=encoder_hidden_states, ).sample assert sample.shape == latents.shape output_slice = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten())), dtype=jnp.float32) expected_output_slice = jnp.array(expected_slice, dtype=jnp.float32) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(output_slice, expected_output_slice, atol=1e-2)