# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import torch from diffusers import DDIMScheduler, LDMPipeline, UNet2DModel, VQModel from diffusers.utils.testing_utils import require_torch, slow, torch_device from transformers import CLIPTextConfig, CLIPTextModel from ...test_pipelines_common import PipelineTesterMixin torch.backends.cuda.matmul.allow_tf32 = False class LDMPipelineFastTests(PipelineTesterMixin, unittest.TestCase): @property def dummy_uncond_unet(self): torch.manual_seed(0) model = UNet2DModel( block_out_channels=(32, 64), layers_per_block=2, sample_size=32, in_channels=3, out_channels=3, down_block_types=("DownBlock2D", "AttnDownBlock2D"), up_block_types=("AttnUpBlock2D", "UpBlock2D"), ) return model @property def dummy_vq_model(self): torch.manual_seed(0) model = VQModel( block_out_channels=[32, 64], in_channels=3, out_channels=3, down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], latent_channels=3, ) return model @property def dummy_text_encoder(self): torch.manual_seed(0) config = CLIPTextConfig( bos_token_id=0, eos_token_id=2, hidden_size=32, intermediate_size=37, layer_norm_eps=1e-05, num_attention_heads=4, num_hidden_layers=5, pad_token_id=1, vocab_size=1000, ) return CLIPTextModel(config) def test_inference_uncond(self): unet = self.dummy_uncond_unet scheduler = DDIMScheduler() vae = self.dummy_vq_model ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler) ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) # Warmup pass when using mps (see #372) if torch_device == "mps": generator = torch.manual_seed(0) _ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images generator = torch.manual_seed(0) image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images generator = torch.manual_seed(0) image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0] image_slice = image[0, -3:, -3:, -1] image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 @slow @require_torch class LDMPipelineIntegrationTests(unittest.TestCase): def test_inference_uncond(self): ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256") ldm.to(torch_device) ldm.set_progress_bar_config(disable=None) generator = torch.manual_seed(0) image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images image_slice = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2