# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import random import tempfile import unittest from distutils.util import strtobool import torch from diffusers import GaussianDDPMScheduler, UNetModel, DDIMScheduler from diffusers.configuration_utils import ConfigMixin from diffusers.pipeline_utils import DiffusionPipeline from models.vision.ddim.modeling_ddim import DDIM from models.vision.ddpm.modeling_ddpm import DDPM from models.vision.latent_diffusion.modeling_latent_diffusion import LatentDiffusion global_rng = random.Random() torch_device = "cuda" if torch.cuda.is_available() else "cpu" torch.backends.cuda.matmul.allow_tf32 = False def parse_flag_from_env(key, default=False): try: value = os.environ[key] except KeyError: # KEY isn't set, default to `default`. _value = default else: # KEY is set, convert it to True or False. try: _value = strtobool(value) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f"If set, {key} must be yes or no.") return _value _run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False) def slow(test_case): """ Decorator marking a test as slow. Slow tests are skipped by default. Set the RUN_SLOW environment variable to a truthy value to run them. """ return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case) def floats_tensor(shape, scale=1.0, rng=None, name=None): """Creates a random float32 tensor""" if rng is None: rng = global_rng total_dims = 1 for dim in shape: total_dims *= dim values = [] for _ in range(total_dims): values.append(rng.random() * scale) return torch.tensor(data=values, dtype=torch.float).view(shape).contiguous() class ConfigTester(unittest.TestCase): def test_load_not_from_mixin(self): with self.assertRaises(ValueError): ConfigMixin.from_config("dummy_path") def test_save_load(self): class SampleObject(ConfigMixin): config_name = "config.json" def __init__( self, a=2, b=5, c=(2, 5), d="for diffusion", e=[1, 3], ): self.register(a=a, b=b, c=c, d=d, e=e) obj = SampleObject() config = obj.config assert config["a"] == 2 assert config["b"] == 5 assert config["c"] == (2, 5) assert config["d"] == "for diffusion" assert config["e"] == [1, 3] with tempfile.TemporaryDirectory() as tmpdirname: obj.save_config(tmpdirname) new_obj = SampleObject.from_config(tmpdirname) new_config = new_obj.config assert config.pop("c") == (2, 5) # instantiated as tuple assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json assert config == new_config class ModelTesterMixin(unittest.TestCase): @property def dummy_input(self): batch_size = 4 num_channels = 3 sizes = (32, 32) noise = floats_tensor((batch_size, num_channels) + sizes) time_step = torch.tensor([10]) return (noise, time_step) def test_from_pretrained_save_pretrained(self): model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(tmpdirname) new_model = UNetModel.from_pretrained(tmpdirname) dummy_input = self.dummy_input image = model(*dummy_input) new_image = new_model(*dummy_input) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" def test_from_pretrained_hub(self): model = UNetModel.from_pretrained("fusing/ddpm_dummy") image = model(*self.dummy_input) assert image is not None, "Make sure output is not None" class SamplerTesterMixin(unittest.TestCase): @slow def test_sample(self): generator = torch.manual_seed(0) # 1. Load models scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church") model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device) # 2. Sample gaussian noise image = scheduler.sample_noise( (1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator ) # 3. Denoise for t in reversed(range(len(scheduler))): # i) define coefficients for time step t clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t)) clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1) image_coeff = ( (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t)) ) clipped_coeff = ( torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t)) ) # ii) predict noise residual with torch.no_grad(): noise_residual = model(image, t) # iii) compute predicted image from residual # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual pred_mean = torch.clamp(pred_mean, -1, 1) prev_image = clipped_coeff * pred_mean + image_coeff * image # iv) sample variance prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator) # v) sample x_{t-1} ~ N(prev_image, prev_variance) sampled_prev_image = prev_image + prev_variance image = sampled_prev_image # Note: The better test is to simply check with the following lines of code that the image is sensible # import PIL # import numpy as np # image_processed = image.cpu().permute(0, 2, 3, 1) # image_processed = (image_processed + 1.0) * 127.5 # image_processed = image_processed.numpy().astype(np.uint8) # image_pil = PIL.Image.fromarray(image_processed[0]) # image_pil.save("test.png") assert image.shape == (1, 3, 256, 256) image_slice = image[0, -1, -3:, -3:].cpu() expected_slice = torch.tensor( [-0.1636, -0.1765, -0.1968, -0.1338, -0.1432, -0.1622, -0.1793, -0.2001, -0.2280] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 def test_sample_fast(self): # 1. Load models generator = torch.manual_seed(0) scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church", timesteps=10) model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device) # 2. Sample gaussian noise image = scheduler.sample_noise( (1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator ) # 3. Denoise for t in reversed(range(len(scheduler))): # i) define coefficients for time step t clipped_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t)) clipped_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1) image_coeff = ( (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t)) ) clipped_coeff = ( torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t)) ) # ii) predict noise residual with torch.no_grad(): noise_residual = model(image, t) # iii) compute predicted image from residual # See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison pred_mean = clipped_image_coeff * image - clipped_noise_coeff * noise_residual pred_mean = torch.clamp(pred_mean, -1, 1) prev_image = clipped_coeff * pred_mean + image_coeff * image # iv) sample variance prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator) # v) sample x_{t-1} ~ N(prev_image, prev_variance) sampled_prev_image = prev_image + prev_variance image = sampled_prev_image assert image.shape == (1, 3, 256, 256) image_slice = image[0, -1, -3:, -3:].cpu() expected_slice = torch.tensor([-0.0304, -0.1895, -0.2436, -0.9837, -0.5422, 0.1931, -0.8175, 0.0862, -0.7783]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 class PipelineTesterMixin(unittest.TestCase): def test_from_pretrained_save_pretrained(self): # 1. Load models model = UNetModel(ch=32, ch_mult=(1, 2), num_res_blocks=2, attn_resolutions=(16,), resolution=32) schedular = GaussianDDPMScheduler(timesteps=10) ddpm = DDPM(model, schedular) with tempfile.TemporaryDirectory() as tmpdirname: ddpm.save_pretrained(tmpdirname) new_ddpm = DDPM.from_pretrained(tmpdirname) generator = torch.manual_seed(0) image = ddpm(generator=generator) generator = generator.manual_seed(0) new_image = new_ddpm(generator=generator) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" @slow def test_from_pretrained_hub(self): model_path = "fusing/ddpm-cifar10" ddpm = DDPM.from_pretrained(model_path) ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path) ddpm.noise_scheduler.num_timesteps = 10 ddpm_from_hub.noise_scheduler.num_timesteps = 10 generator = torch.manual_seed(0) image = ddpm(generator=generator) generator = generator.manual_seed(0) new_image = ddpm_from_hub(generator=generator) assert (image - new_image).abs().sum() < 1e-5, "Models don't give the same forward pass" @slow def test_ddpm_cifar10(self): generator = torch.manual_seed(0) model_id = "fusing/ddpm-cifar10" unet = UNetModel.from_pretrained(model_id) noise_scheduler = GaussianDDPMScheduler.from_config(model_id) ddpm = DDPM(unet=unet, noise_scheduler=noise_scheduler) image = ddpm(generator=generator) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor([0.2250, 0.3375, 0.2360, 0.0930, 0.3440, 0.3156, 0.1937, 0.3585, 0.1761]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ddim_cifar10(self): generator = torch.manual_seed(0) model_id = "fusing/ddpm-cifar10" unet = UNetModel.from_pretrained(model_id) noise_scheduler = DDIMScheduler() ddim = DDIM(unet=unet, noise_scheduler=noise_scheduler) image = ddim(generator=generator, eta=0.0) image_slice = image[0, -1, -3:, -3:].cpu() assert image.shape == (1, 3, 32, 32) expected_slice = torch.tensor( [-0.7383, -0.7385, -0.7298, -0.7364, -0.7414, -0.7239, -0.6737, -0.6813, -0.7068] ) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2 @slow def test_ldm_text2img(self): model_id = "fusing/latent-diffusion-text2im-large" ldm = LatentDiffusion.from_pretrained(model_id) prompt = "A painting of a squirrel eating a burger" generator = torch.manual_seed(0) image = ldm([prompt], generator=generator, num_inference_steps=20) image_slice = image[0, -1, -3:, -3:].cpu() print(image_slice.shape) assert image.shape == (1, 3, 256, 256) expected_slice = torch.tensor([0.7295, 0.7358, 0.7256, 0.7435, 0.7095, 0.6884, 0.7325, 0.6921, 0.6458]) assert (image_slice.flatten() - expected_slice).abs().max() < 1e-2