# coding=utf-8 # Copyright 2022 HuggingFace Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import inspect import tempfile import unittest from typing import Dict, List, Tuple from diffusers import FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxPNDMScheduler from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from jax import random jax_device = jax.default_backend() @require_flax class FlaxSchedulerCommonTest(unittest.TestCase): scheduler_classes = () forward_default_kwargs = () @property def dummy_sample(self): batch_size = 4 num_channels = 3 height = 8 width = 8 key1, key2 = random.split(random.PRNGKey(0)) sample = random.uniform(key1, (batch_size, num_channels, height, width)) return sample, key2 @property def dummy_sample_deter(self): batch_size = 4 num_channels = 3 height = 8 width = 8 num_elems = batch_size * num_channels * height * width sample = jnp.arange(num_elems) sample = sample.reshape(num_channels, height, width, batch_size) sample = sample / num_elems return jnp.transpose(sample, (3, 0, 1, 2)) def get_scheduler_config(self): raise NotImplementedError def dummy_model(self): def model(sample, t, *args): return sample * t / (t + 1) return model def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample, key = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output = scheduler.step(state, residual, time_step, sample, key, **kwargs).prev_sample new_output = new_scheduler.step(new_state, residual, time_step, sample, key, **kwargs).prev_sample assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) kwargs.update(forward_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample, key = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output = scheduler.step(state, residual, time_step, sample, key, **kwargs).prev_sample new_output = new_scheduler.step(new_state, residual, time_step, sample, key, **kwargs).prev_sample assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_from_save_pretrained(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample, key = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output = scheduler.step(state, residual, 1, sample, key, **kwargs).prev_sample new_output = new_scheduler.step(new_state, residual, 1, sample, key, **kwargs).prev_sample assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() sample, key = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output_0 = scheduler.step(state, residual, 0, sample, key, **kwargs).prev_sample output_1 = scheduler.step(state, residual, 1, sample, key, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_scheduler_outputs_equivalence(self): def set_nan_tensor_to_zero(t): return t.at[t != t].set(0) def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), msg=( "Tuple and dict output are not equal. Difference:" f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." ), ) kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() sample, key = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps outputs_dict = scheduler.step(state, residual, 0, sample, key, **kwargs) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps outputs_tuple = scheduler.step(state, residual, 0, sample, key, return_dict=False, **kwargs) recursive_check(outputs_tuple[0], outputs_dict.prev_sample) def test_deprecated_kwargs(self): for scheduler_class in self.scheduler_classes: has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 if has_kwarg_in_model_class and not has_deprecated_kwarg: raise ValueError( f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" " []`" ) if not has_kwarg_in_model_class and has_deprecated_kwarg: raise ValueError( f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" " deprecated argument from `_deprecated_kwargs = []`" ) @require_flax class FlaxDDPMSchedulerTest(FlaxSchedulerCommonTest): scheduler_classes = (FlaxDDPMScheduler,) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", "variance_type": "fixed_small", "clip_sample": True, } config.update(**kwargs) return config def test_timesteps(self): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_variance_type(self): for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=variance) def test_clip_sample(self): for clip_sample in [True, False]: self.check_over_configs(clip_sample=clip_sample) def test_time_indices(self): for t in [0, 500, 999]: self.check_over_forward(time_step=t) def test_variance(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0) - 0.0)) < 1e-5 assert jnp.sum(jnp.abs(scheduler._get_variance(state, 487) - 0.00979)) < 1e-5 assert jnp.sum(jnp.abs(scheduler._get_variance(state, 999) - 0.02)) < 1e-5 def test_full_loop_no_noise(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() num_trained_timesteps = len(scheduler) model = self.dummy_model() sample = self.dummy_sample_deter key1, key2 = random.split(random.PRNGKey(0)) for t in reversed(range(num_trained_timesteps)): # 1. predict noise residual residual = model(sample, t) # 2. predict previous mean of sample x_t-1 output = scheduler.step(state, residual, t, sample, key1) pred_prev_sample = output.prev_sample state = output.state key1, key2 = random.split(key2) # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance sample = pred_prev_sample result_sum = jnp.sum(jnp.abs(sample)) result_mean = jnp.mean(jnp.abs(sample)) if jax_device == "tpu": assert abs(result_sum - 255.0714) < 1e-2 assert abs(result_mean - 0.332124) < 1e-3 else: assert abs(result_sum - 255.1113) < 1e-2 assert abs(result_mean - 0.332176) < 1e-3 @require_flax class FlaxDDIMSchedulerTest(FlaxSchedulerCommonTest): scheduler_classes = (FlaxDDIMScheduler,) forward_default_kwargs = (("num_inference_steps", 50),) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**kwargs) return config def full_loop(self, **config): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() key1, key2 = random.split(random.PRNGKey(0)) num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter state = scheduler.set_timesteps(state, num_inference_steps) for t in state.timesteps: residual = model(sample, t) output = scheduler.step(state, residual, t, sample) sample = output.prev_sample state = output.state key1, key2 = random.split(key2) return sample def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample, _ = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output = scheduler.step(state, residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step(new_state, residual, time_step, sample, **kwargs).prev_sample assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_from_save_pretrained(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample, _ = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output = scheduler.step(state, residual, 1, sample, **kwargs).prev_sample new_output = new_scheduler.step(new_state, residual, 1, sample, **kwargs).prev_sample assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) kwargs.update(forward_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: sample, _ = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) new_state = new_scheduler.set_timesteps(new_state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output = scheduler.step(state, residual, time_step, sample, **kwargs).prev_sample new_output = new_scheduler.step(new_state, residual, time_step, sample, **kwargs).prev_sample assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_scheduler_outputs_equivalence(self): def set_nan_tensor_to_zero(t): return t.at[t != t].set(0) def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), msg=( "Tuple and dict output are not equal. Difference:" f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." ), ) kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() sample, _ = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps outputs_dict = scheduler.step(state, residual, 0, sample, **kwargs) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps outputs_tuple = scheduler.step(state, residual, 0, sample, return_dict=False, **kwargs) recursive_check(outputs_tuple[0], outputs_dict.prev_sample) def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() sample, _ = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps output_0 = scheduler.step(state, residual, 0, sample, **kwargs).prev_sample output_1 = scheduler.step(state, residual, 1, sample, **kwargs).prev_sample self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_timesteps(self): for timesteps in [100, 500, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_steps_offset(self): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=steps_offset) scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(steps_offset=1) scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() state = scheduler.set_timesteps(state, 5) assert jnp.equal(state.timesteps, jnp.array([801, 601, 401, 201, 1])).all() def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_time_indices(self): for t in [1, 10, 49]: self.check_over_forward(time_step=t) def test_inference_steps(self): for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]): self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps) def test_variance(self): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0, 0) - 0.0)) < 1e-5 assert jnp.sum(jnp.abs(scheduler._get_variance(state, 420, 400) - 0.14771)) < 1e-5 assert jnp.sum(jnp.abs(scheduler._get_variance(state, 980, 960) - 0.32460)) < 1e-5 assert jnp.sum(jnp.abs(scheduler._get_variance(state, 0, 0) - 0.0)) < 1e-5 assert jnp.sum(jnp.abs(scheduler._get_variance(state, 487, 486) - 0.00979)) < 1e-5 assert jnp.sum(jnp.abs(scheduler._get_variance(state, 999, 998) - 0.02)) < 1e-5 def test_full_loop_no_noise(self): sample = self.full_loop() result_sum = jnp.sum(jnp.abs(sample)) result_mean = jnp.mean(jnp.abs(sample)) assert abs(result_sum - 172.0067) < 1e-2 assert abs(result_mean - 0.223967) < 1e-3 def test_full_loop_with_set_alpha_to_one(self): # We specify different beta, so that the first alpha is 0.99 sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) result_sum = jnp.sum(jnp.abs(sample)) result_mean = jnp.mean(jnp.abs(sample)) if jax_device == "tpu": assert abs(result_sum - 149.8409) < 1e-2 assert abs(result_mean - 0.1951) < 1e-3 else: assert abs(result_sum - 149.8295) < 1e-2 assert abs(result_mean - 0.1951) < 1e-3 def test_full_loop_with_no_set_alpha_to_one(self): # We specify different beta, so that the first alpha is 0.99 sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) result_sum = jnp.sum(jnp.abs(sample)) result_mean = jnp.mean(jnp.abs(sample)) if jax_device == "tpu": pass # FIXME: both result_sum and result_mean are nan on TPU # assert jnp.isnan(result_sum) # assert jnp.isnan(result_mean) else: assert abs(result_sum - 149.0784) < 1e-2 assert abs(result_mean - 0.1941) < 1e-3 def test_prediction_type(self): for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=prediction_type) @require_flax class FlaxPNDMSchedulerTest(FlaxSchedulerCommonTest): scheduler_classes = (FlaxPNDMScheduler,) forward_default_kwargs = (("num_inference_steps", 50),) def get_scheduler_config(self, **kwargs): config = { "num_train_timesteps": 1000, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**kwargs) return config def check_over_configs(self, time_step=0, **config): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample, _ = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) # copy over dummy past residuals state = state.replace(ets=dummy_past_residuals[:]) with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) new_state = new_scheduler.set_timesteps(new_state, num_inference_steps, shape=sample.shape) # copy over dummy past residuals new_state = new_state.replace(ets=dummy_past_residuals[:]) (prev_sample, state) = scheduler.step_prk(state, residual, time_step, sample, **kwargs) (new_prev_sample, new_state) = new_scheduler.step_prk(new_state, residual, time_step, sample, **kwargs) assert jnp.sum(jnp.abs(prev_sample - new_prev_sample)) < 1e-5, "Scheduler outputs are not identical" output, _ = scheduler.step_plms(state, residual, time_step, sample, **kwargs) new_output, _ = new_scheduler.step_plms(new_state, residual, time_step, sample, **kwargs) assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def test_from_save_pretrained(self): pass def test_scheduler_outputs_equivalence(self): def set_nan_tensor_to_zero(t): return t.at[t != t].set(0) def recursive_check(tuple_object, dict_object): if isinstance(tuple_object, (List, Tuple)): for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif isinstance(tuple_object, Dict): for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): recursive_check(tuple_iterable_value, dict_iterable_value) elif tuple_object is None: return else: self.assertTrue( jnp.allclose(set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5), msg=( "Tuple and dict output are not equal. Difference:" f" {jnp.max(jnp.abs(tuple_object - dict_object))}. Tuple has `nan`:" f" {jnp.isnan(tuple_object).any()} and `inf`: {jnp.isinf(tuple_object)}. Dict has" f" `nan`: {jnp.isnan(dict_object).any()} and `inf`: {jnp.isinf(dict_object)}." ), ) kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() sample, _ = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps outputs_dict = scheduler.step(state, residual, 0, sample, **kwargs) if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps outputs_tuple = scheduler.step(state, residual, 0, sample, return_dict=False, **kwargs) recursive_check(outputs_tuple[0], outputs_dict.prev_sample) def check_over_forward(self, time_step=0, **forward_kwargs): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) sample, _ = self.dummy_sample residual = 0.1 * sample dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) # copy over dummy past residuals (must be after setting timesteps) scheduler.ets = dummy_past_residuals[:] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(tmpdirname) new_scheduler, new_state = scheduler_class.from_pretrained(tmpdirname) # copy over dummy past residuals new_state = new_scheduler.set_timesteps(new_state, num_inference_steps, shape=sample.shape) # copy over dummy past residual (must be after setting timesteps) new_state.replace(ets=dummy_past_residuals[:]) output, state = scheduler.step_prk(state, residual, time_step, sample, **kwargs) new_output, new_state = new_scheduler.step_prk(new_state, residual, time_step, sample, **kwargs) assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" output, _ = scheduler.step_plms(state, residual, time_step, sample, **kwargs) new_output, _ = new_scheduler.step_plms(new_state, residual, time_step, sample, **kwargs) assert jnp.sum(jnp.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" def full_loop(self, **config): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(**config) scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() num_inference_steps = 10 model = self.dummy_model() sample = self.dummy_sample_deter state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) for i, t in enumerate(state.prk_timesteps): residual = model(sample, t) sample, state = scheduler.step_prk(state, residual, t, sample) for i, t in enumerate(state.plms_timesteps): residual = model(sample, t) sample, state = scheduler.step_plms(state, residual, t, sample) return sample def test_step_shape(self): kwargs = dict(self.forward_default_kwargs) num_inference_steps = kwargs.pop("num_inference_steps", None) for scheduler_class in self.scheduler_classes: scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() sample, _ = self.dummy_sample residual = 0.1 * sample if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): kwargs["num_inference_steps"] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) dummy_past_residuals = jnp.array([residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]) state = state.replace(ets=dummy_past_residuals[:]) output_0, state = scheduler.step_prk(state, residual, 0, sample, **kwargs) output_1, state = scheduler.step_prk(state, residual, 1, sample, **kwargs) self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) output_0, state = scheduler.step_plms(state, residual, 0, sample, **kwargs) output_1, state = scheduler.step_plms(state, residual, 1, sample, **kwargs) self.assertEqual(output_0.shape, sample.shape) self.assertEqual(output_0.shape, output_1.shape) def test_timesteps(self): for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=timesteps) def test_steps_offset(self): for steps_offset in [0, 1]: self.check_over_configs(steps_offset=steps_offset) scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config(steps_offset=1) scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() state = scheduler.set_timesteps(state, 10, shape=()) assert jnp.equal( state.timesteps, jnp.array([901, 851, 851, 801, 801, 751, 751, 701, 701, 651, 651, 601, 601, 501, 401, 301, 201, 101, 1]), ).all() def test_betas(self): for beta_start, beta_end in zip([0.0001, 0.001], [0.002, 0.02]): self.check_over_configs(beta_start=beta_start, beta_end=beta_end) def test_schedules(self): for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=schedule) def test_time_indices(self): for t in [1, 5, 10]: self.check_over_forward(time_step=t) def test_inference_steps(self): for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]): self.check_over_forward(num_inference_steps=num_inference_steps) def test_pow_of_3_inference_steps(self): # earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3 num_inference_steps = 27 for scheduler_class in self.scheduler_classes: sample, _ = self.dummy_sample residual = 0.1 * sample scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() state = scheduler.set_timesteps(state, num_inference_steps, shape=sample.shape) # before power of 3 fix, would error on first step, so we only need to do two for i, t in enumerate(state.prk_timesteps[:2]): sample, state = scheduler.step_prk(state, residual, t, sample) def test_inference_plms_no_past_residuals(self): with self.assertRaises(ValueError): scheduler_class = self.scheduler_classes[0] scheduler_config = self.get_scheduler_config() scheduler = scheduler_class(**scheduler_config) state = scheduler.create_state() scheduler.step_plms(state, self.dummy_sample, 1, self.dummy_sample).prev_sample def test_full_loop_no_noise(self): sample = self.full_loop() result_sum = jnp.sum(jnp.abs(sample)) result_mean = jnp.mean(jnp.abs(sample)) if jax_device == "tpu": assert abs(result_sum - 198.1275) < 1e-2 assert abs(result_mean - 0.2580) < 1e-3 else: assert abs(result_sum - 198.1318) < 1e-2 assert abs(result_mean - 0.2580) < 1e-3 def test_full_loop_with_set_alpha_to_one(self): # We specify different beta, so that the first alpha is 0.99 sample = self.full_loop(set_alpha_to_one=True, beta_start=0.01) result_sum = jnp.sum(jnp.abs(sample)) result_mean = jnp.mean(jnp.abs(sample)) if jax_device == "tpu": assert abs(result_sum - 186.83226) < 1e-2 assert abs(result_mean - 0.24327) < 1e-3 else: assert abs(result_sum - 186.9466) < 1e-2 assert abs(result_mean - 0.24342) < 1e-3 def test_full_loop_with_no_set_alpha_to_one(self): # We specify different beta, so that the first alpha is 0.99 sample = self.full_loop(set_alpha_to_one=False, beta_start=0.01) result_sum = jnp.sum(jnp.abs(sample)) result_mean = jnp.mean(jnp.abs(sample)) if jax_device == "tpu": assert abs(result_sum - 186.83226) < 1e-2 assert abs(result_mean - 0.24327) < 1e-3 else: assert abs(result_sum - 186.9482) < 1e-2 assert abs(result_mean - 0.2434) < 1e-3