07b6d0e71e | ||
---|---|---|
examples | ||
models | ||
src/diffusers | ||
tests | ||
utils | ||
.gitignore | ||
LICENSE | ||
Makefile | ||
README.md | ||
pyproject.toml | ||
setup.cfg | ||
setup.py |
README.md
Diffusers
Definitions
Models: Single neural network that models p_θ(x_t-1|x_t) and is trained to “denoise” to image Examples: UNet, Conditioned UNet, 3D UNet, Transformer UNet
Samplers: Algorithm to train and sample from Model. Defines alpha and beta schedule, timesteps, etc.. Example: Vanilla DDPM, DDIM, PMLS, DEIN
Diffusion Pipeline: End-to-end pipeline that includes multiple diffusion models, possible text encoders, CLIP Example: GLIDE,CompVis/Latent-Diffusion, Imagen, DALL-E
1. diffusers
as a central modular diffusion and sampler library
diffusers
should be more modularized than transformers
so that parts of it can be easily used in other libraries.
It could become a central place for all kinds of models, samplers, training utils and processors required when using diffusion models in audio, vision, ...
One should be able to save both models and samplers as well as load them from the Hub.
Example:
import torch
from diffusers import UNetModel, GaussianDDPMScheduler
import PIL
import numpy as np
generator = torch.Generator()
generator = generator.manual_seed(6694729458485568)
# 1. Load models
scheduler = GaussianDDPMScheduler.from_config("fusing/ddpm-lsun-church")
model = UNetModel.from_pretrained("fusing/ddpm-lsun-church").to(torch_device)
# 2. Sample gaussian noise
image = scheduler.sample_noise((1, model.in_channels, model.resolution, model.resolution), device=torch_device, generator=generator)
# 3. Denoise
for t in reversed(range(len(scheduler))):
# i) define coefficients for time step t
clip_image_coeff = 1 / torch.sqrt(scheduler.get_alpha_prod(t))
clip_noise_coeff = torch.sqrt(1 / scheduler.get_alpha_prod(t) - 1)
image_coeff = (1 - scheduler.get_alpha_prod(t - 1)) * torch.sqrt(scheduler.get_alpha(t)) / (1 - scheduler.get_alpha_prod(t))
clip_coeff = torch.sqrt(scheduler.get_alpha_prod(t - 1)) * scheduler.get_beta(t) / (1 - scheduler.get_alpha_prod(t))
# ii) predict noise residual
with torch.no_grad():
noise_residual = model(image, t)
# iii) compute predicted image from residual
# See 2nd formula at https://github.com/hojonathanho/diffusion/issues/5#issue-896554416 for comparison
pred_mean = clip_image_coeff * image - clip_noise_coeff * noise_residual
pred_mean = torch.clamp(pred_mean, -1, 1)
prev_image = clip_coeff * pred_mean + image_coeff * image
# iv) sample variance
prev_variance = scheduler.sample_variance(t, prev_image.shape, device=torch_device, generator=generator)
# v) sample x_{t-1} ~ N(prev_image, prev_variance)
sampled_prev_image = prev_image + prev_variance
image = sampled_prev_image
image_processed = image.cpu().permute(0, 2, 3, 1)
image_processed = (image_processed + 1.0) * 127.5
image_processed = image_processed.numpy().astype(np.uint8)
image_pil = PIL.Image.fromarray(image_processed[0])
image_pil.save("test.png")
2. diffusers
as a collection of most import Diffusion models (GLIDE, Dalle, ...)
models
directory in repository hosts complete diffusion training code & pipelines. Easily load & saveable from the Hub. Will be possible to use just from pip diffusers
version:
Example:
from diffusers import UNetModel, GaussianDDPMScheduler
from modeling_ddpm import DDPM
import tempfile
unet = UNetModel.from_pretrained("fusing/ddpm_dummy")
sampler = GaussianDDPMScheduler.from_config("fusing/ddpm_dummy")
# compose Diffusion Pipeline
ddpm = DDPM(unet, sampler)
# generate / sample
image = ddpm()
print(image)
# save and load with 0 extra code (handled by general `DiffusionPipeline` class)
# will also be possible to do so from the Hub
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
print("Model saved")
ddpm_new = DDPM.from_pretrained(tmpdirname)
print("Model loaded")
print(ddpm_new)
Library structure:
├── models
│ ├── audio
│ │ └── fastdiff
│ │ ├── modeling_fastdiff.py
│ │ ├── README.md
│ │ └── run_fastdiff.py
│ └── vision
│ ├── dalle2
│ │ ├── modeling_dalle2.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ ├── ddpm
│ │ ├── modeling_ddpm.py
│ │ ├── README.md
│ │ └── run_ddpm.py
│ ├── glide
│ │ ├── modeling_glide.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ ├── imagen
│ │ ├── modeling_dalle2.py
│ │ ├── README.md
│ │ └── run_dalle2.py
│ └── latent_diffusion
│ ├── modeling_latent_diffusion.py
│ ├── README.md
│ └── run_latent_diffusion.py
├── src
│ └── diffusers
│ ├── configuration_utils.py
│ ├── __init__.py
│ ├── modeling_utils.py
│ ├── models
│ │ └── unet.py
│ ├── processors
│ └── schedulers
│ ├── gaussian_ddpm.py
├── tests
│ └── test_modeling_utils.py