95 lines
2.9 KiB
Python
95 lines
2.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import VQModel
|
|
from diffusers.utils import floats_tensor, torch_device
|
|
|
|
from ..test_modeling_common import ModelTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class VQModelTests(ModelTesterMixin, unittest.TestCase):
|
|
model_class = VQModel
|
|
|
|
@property
|
|
def dummy_input(self, sizes=(32, 32)):
|
|
batch_size = 4
|
|
num_channels = 3
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes).to(torch_device)
|
|
|
|
return {"sample": image}
|
|
|
|
@property
|
|
def input_shape(self):
|
|
return (3, 32, 32)
|
|
|
|
@property
|
|
def output_shape(self):
|
|
return (3, 32, 32)
|
|
|
|
def prepare_init_args_and_inputs_for_common(self):
|
|
init_dict = {
|
|
"block_out_channels": [32, 64],
|
|
"in_channels": 3,
|
|
"out_channels": 3,
|
|
"down_block_types": ["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
"up_block_types": ["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
"latent_channels": 3,
|
|
}
|
|
inputs_dict = self.dummy_input
|
|
return init_dict, inputs_dict
|
|
|
|
def test_forward_signature(self):
|
|
pass
|
|
|
|
def test_training(self):
|
|
pass
|
|
|
|
def test_from_pretrained_hub(self):
|
|
model, loading_info = VQModel.from_pretrained("fusing/vqgan-dummy", output_loading_info=True)
|
|
self.assertIsNotNone(model)
|
|
self.assertEqual(len(loading_info["missing_keys"]), 0)
|
|
|
|
model.to(torch_device)
|
|
image = model(**self.dummy_input)
|
|
|
|
assert image is not None, "Make sure output is not None"
|
|
|
|
def test_output_pretrained(self):
|
|
model = VQModel.from_pretrained("fusing/vqgan-dummy")
|
|
model.to(torch_device).eval()
|
|
|
|
torch.manual_seed(0)
|
|
if torch.cuda.is_available():
|
|
torch.cuda.manual_seed_all(0)
|
|
|
|
image = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size)
|
|
image = image.to(torch_device)
|
|
with torch.no_grad():
|
|
output = model(image).sample
|
|
|
|
output_slice = output[0, -1, -3:, -3:].flatten().cpu()
|
|
# fmt: off
|
|
expected_output_slice = torch.tensor([-0.0153, -0.4044, -0.1880, -0.5161, -0.2418, -0.4072, -0.1612, -0.0633, -0.0143])
|
|
# fmt: on
|
|
self.assertTrue(torch.allclose(output_slice, expected_output_slice, atol=1e-3))
|