diffusers/tests/pipelines/stable_diffusion/test_stable_diffusion_inpai...

679 lines
26 KiB
Python

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
LMSDiscreteScheduler,
PNDMScheduler,
StableDiffusionInpaintPipeline,
UNet2DConditionModel,
UNet2DModel,
VQModel,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_inpaint import prepare_mask_and_masked_image
from diffusers.utils.testing_utils import require_torch_gpu
from PIL import Image
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from ...test_pipelines_common import PipelineTesterMixin
torch.backends.cuda.matmul.allow_tf32 = False
class StableDiffusionInpaintPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_uncond_unet(self):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_cond_unet_inpaint(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=9,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vq_model(self):
torch.manual_seed(0)
model = VQModel(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=3,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_inpaint(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((128, 128))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 128, 128, 3)
expected_slice = np.array([0.5075, 0.4485, 0.4558, 0.5369, 0.5369, 0.5236, 0.5127, 0.4983, 0.4776])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
def test_stable_diffusion_inpaint_with_num_images_per_prompt(self):
device = "cpu"
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((128, 128))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
images = sd_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
num_images_per_prompt=2,
).images
# check if the output is a list of 2 images
assert len(images) == 2
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_inpaint_fp16(self):
"""Test that stable diffusion inpaint_legacy works with fp16"""
unet = self.dummy_cond_unet_inpaint
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB").resize((128, 128))
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
sd_pipe = StableDiffusionInpaintPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=None,
)
sd_pipe = sd_pipe.to(torch_device)
sd_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=torch_device).manual_seed(0)
image = sd_pipe(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
assert image.shape == (1, 128, 128, 3)
@slow
@require_torch_gpu
class StableDiffusionInpaintPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_inpaint_pipeline(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-3
def test_stable_diffusion_inpaint_pipeline_fp16(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench_fp16.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
revision="fp16",
torch_dtype=torch.float16,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 5e-1
def test_stable_diffusion_inpaint_pipeline_pndm(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench_pndm.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None, scheduler=pndm)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2
def test_stable_diffusion_inpaint_pipeline_k_lms(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/in_paint"
"/yellow_cat_sitting_on_a_park_bench_k_lms.npy"
)
model_id = "runwayml/stable-diffusion-inpainting"
pipe = StableDiffusionInpaintPipeline.from_pretrained(model_id, safety_checker=None)
pipe.to(torch_device)
# switch to LMS
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 512, 3)
assert np.abs(expected_image - image).max() < 1e-2
@unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
def test_stable_diffusion_pipeline_with_sequential_cpu_offloading(self):
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.reset_peak_memory_stats()
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo.png"
)
mask_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
)
model_id = "runwayml/stable-diffusion-inpainting"
pndm = PNDMScheduler.from_pretrained(model_id, subfolder="scheduler")
pipe = StableDiffusionInpaintPipeline.from_pretrained(
model_id,
safety_checker=None,
scheduler=pndm,
device_map="auto",
revision="fp16",
torch_dtype=torch.float16,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing(1)
pipe.enable_sequential_cpu_offload()
prompt = "Face of a yellow cat, high resolution, sitting on a park bench"
generator = torch.Generator(device=torch_device).manual_seed(0)
_ = pipe(
prompt=prompt,
image=init_image,
mask_image=mask_image,
generator=generator,
num_inference_steps=5,
output_type="np",
)
mem_bytes = torch.cuda.max_memory_allocated()
# make sure that less than 2.2 GB is allocated
assert mem_bytes < 2.2 * 10**9
class StableDiffusionInpaintingPrepareMaskAndMaskedImageTests(unittest.TestCase):
def test_pil_inputs(self):
im = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
im = Image.fromarray(im)
mask = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
mask = Image.fromarray((mask * 255).astype(np.uint8))
t_mask, t_masked = prepare_mask_and_masked_image(im, mask)
self.assertTrue(isinstance(t_mask, torch.Tensor))
self.assertTrue(isinstance(t_masked, torch.Tensor))
self.assertEqual(t_mask.ndim, 4)
self.assertEqual(t_masked.ndim, 4)
self.assertEqual(t_mask.shape, (1, 1, 32, 32))
self.assertEqual(t_masked.shape, (1, 3, 32, 32))
self.assertTrue(t_mask.dtype == torch.float32)
self.assertTrue(t_masked.dtype == torch.float32)
self.assertTrue(t_mask.min() >= 0.0)
self.assertTrue(t_mask.max() <= 1.0)
self.assertTrue(t_masked.min() >= -1.0)
self.assertTrue(t_masked.min() <= 1.0)
self.assertTrue(t_mask.sum() > 0.0)
def test_np_inputs(self):
im_np = np.random.randint(0, 255, (32, 32, 3), dtype=np.uint8)
im_pil = Image.fromarray(im_np)
mask_np = np.random.randint(0, 255, (32, 32), dtype=np.uint8) > 127.5
mask_pil = Image.fromarray((mask_np * 255).astype(np.uint8))
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
t_mask_pil, t_masked_pil = prepare_mask_and_masked_image(im_pil, mask_pil)
self.assertTrue((t_mask_np == t_mask_pil).all())
self.assertTrue((t_masked_np == t_masked_pil).all())
def test_torch_3D_2D_inputs(self):
im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy().transpose(1, 2, 0)
mask_np = mask_tensor.numpy()
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_3D_3D_inputs(self):
im_tensor = torch.randint(0, 255, (3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy().transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_2D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_3D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_4D_4D_inputs(self):
im_tensor = torch.randint(0, 255, (1, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (1, 1, 32, 32), dtype=torch.uint8) > 127.5
im_np = im_tensor.numpy()[0].transpose(1, 2, 0)
mask_np = mask_tensor.numpy()[0][0]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
t_mask_np, t_masked_np = prepare_mask_and_masked_image(im_np, mask_np)
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_batch_4D_3D(self):
im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (2, 32, 32), dtype=torch.uint8) > 127.5
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
mask_nps = [mask.numpy() for mask in mask_tensor]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
t_mask_np = torch.cat([n[0] for n in nps])
t_masked_np = torch.cat([n[1] for n in nps])
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_torch_batch_4D_4D(self):
im_tensor = torch.randint(0, 255, (2, 3, 32, 32), dtype=torch.uint8)
mask_tensor = torch.randint(0, 255, (2, 1, 32, 32), dtype=torch.uint8) > 127.5
im_nps = [im.numpy().transpose(1, 2, 0) for im in im_tensor]
mask_nps = [mask.numpy()[0] for mask in mask_tensor]
t_mask_tensor, t_masked_tensor = prepare_mask_and_masked_image(im_tensor / 127.5 - 1, mask_tensor)
nps = [prepare_mask_and_masked_image(i, m) for i, m in zip(im_nps, mask_nps)]
t_mask_np = torch.cat([n[0] for n in nps])
t_masked_np = torch.cat([n[1] for n in nps])
self.assertTrue((t_mask_tensor == t_mask_np).all())
self.assertTrue((t_masked_tensor == t_masked_np).all())
def test_shape_mismatch(self):
# test height and width
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(3, 32, 32), torch.randn(64, 64))
# test batch dim
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 64, 64))
# test batch dim
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.randn(2, 3, 32, 32), torch.randn(4, 1, 64, 64))
def test_type_mismatch(self):
# test tensors-only
with self.assertRaises(TypeError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.rand(3, 32, 32).numpy())
# test tensors-only
with self.assertRaises(TypeError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32).numpy(), torch.rand(3, 32, 32))
def test_channels_first(self):
# test channels first for 3D tensors
with self.assertRaises(AssertionError):
prepare_mask_and_masked_image(torch.rand(32, 32, 3), torch.rand(3, 32, 32))
def test_tensor_range(self):
# test im <= 1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.ones(3, 32, 32) * 2, torch.rand(32, 32))
# test im >= -1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.ones(3, 32, 32) * (-2), torch.rand(32, 32))
# test mask <= 1
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * 2)
# test mask >= 0
with self.assertRaises(ValueError):
prepare_mask_and_masked_image(torch.rand(3, 32, 32), torch.ones(32, 32) * -1)