1007 lines
38 KiB
Python
1007 lines
38 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import os
|
|
import random
|
|
import tempfile
|
|
import tracemalloc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
import accelerate
|
|
import PIL
|
|
import transformers
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMPipeline,
|
|
DDIMScheduler,
|
|
DDPMPipeline,
|
|
DDPMScheduler,
|
|
KarrasVePipeline,
|
|
KarrasVeScheduler,
|
|
LDMPipeline,
|
|
LDMTextToImagePipeline,
|
|
OnnxStableDiffusionImg2ImgPipeline,
|
|
OnnxStableDiffusionInpaintPipeline,
|
|
OnnxStableDiffusionPipeline,
|
|
PNDMPipeline,
|
|
PNDMScheduler,
|
|
ScoreSdeVePipeline,
|
|
ScoreSdeVeScheduler,
|
|
StableDiffusionImg2ImgPipeline,
|
|
StableDiffusionInpaintPipelineLegacy,
|
|
StableDiffusionPipeline,
|
|
UNet2DConditionModel,
|
|
UNet2DModel,
|
|
VQModel,
|
|
logging,
|
|
)
|
|
from diffusers.pipeline_utils import DiffusionPipeline
|
|
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
|
|
from diffusers.utils import CONFIG_NAME, WEIGHTS_NAME, floats_tensor, load_image, slow, torch_device
|
|
from diffusers.utils.testing_utils import CaptureLogger, get_tests_dir
|
|
from packaging import version
|
|
from PIL import Image
|
|
from transformers import CLIPFeatureExtractor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
def test_progress_bar(capsys):
|
|
model = UNet2DModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
)
|
|
scheduler = DDPMScheduler(num_train_timesteps=10)
|
|
|
|
ddpm = DDPMPipeline(model, scheduler).to(torch_device)
|
|
ddpm(output_type="numpy").images
|
|
captured = capsys.readouterr()
|
|
assert "10/10" in captured.err, "Progress bar has to be displayed"
|
|
|
|
ddpm.set_progress_bar_config(disable=True)
|
|
ddpm(output_type="numpy").images
|
|
captured = capsys.readouterr()
|
|
assert captured.err == "", "Progress bar should be disabled"
|
|
|
|
|
|
class CustomPipelineTests(unittest.TestCase):
|
|
def test_load_custom_pipeline(self):
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
|
|
)
|
|
# NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
|
|
# under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
|
|
assert pipeline.__class__.__name__ == "CustomPipeline"
|
|
|
|
def test_run_custom_pipeline(self):
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
|
|
)
|
|
images, output_str = pipeline(num_inference_steps=2, output_type="np")
|
|
|
|
assert images[0].shape == (1, 32, 32, 3)
|
|
# compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
|
|
assert output_str == "This is a test"
|
|
|
|
def test_local_custom_pipeline(self):
|
|
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
|
|
)
|
|
images, output_str = pipeline(num_inference_steps=2, output_type="np")
|
|
|
|
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
|
|
assert images[0].shape == (1, 32, 32, 3)
|
|
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
|
|
assert output_str == "This is a local test"
|
|
|
|
@slow
|
|
@unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
|
|
def test_load_pipeline_from_git(self):
|
|
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
|
|
|
|
feature_extractor = CLIPFeatureExtractor.from_pretrained(clip_model_id)
|
|
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
|
|
|
|
pipeline = DiffusionPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4",
|
|
custom_pipeline="clip_guided_stable_diffusion",
|
|
clip_model=clip_model,
|
|
feature_extractor=feature_extractor,
|
|
torch_dtype=torch.float16,
|
|
revision="fp16",
|
|
)
|
|
pipeline.enable_attention_slicing()
|
|
pipeline = pipeline.to(torch_device)
|
|
|
|
# NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
|
|
# https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
|
|
assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"
|
|
|
|
image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
|
|
assert image.shape == (512, 512, 3)
|
|
|
|
|
|
class PipelineFastTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@property
|
|
def dummy_image(self):
|
|
batch_size = 1
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
|
return image
|
|
|
|
@property
|
|
def dummy_uncond_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_cond_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_cond_unet_inpaint(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=9,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vq_model(self):
|
|
torch.manual_seed(0)
|
|
model = VQModel(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=3,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vae(self):
|
|
torch.manual_seed(0)
|
|
model = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
return CLIPTextModel(config)
|
|
|
|
@property
|
|
def dummy_extractor(self):
|
|
def extract(*args, **kwargs):
|
|
class Out:
|
|
def __init__(self):
|
|
self.pixel_values = torch.ones([0])
|
|
|
|
def to(self, device):
|
|
self.pixel_values.to(device)
|
|
return self
|
|
|
|
return Out()
|
|
|
|
return extract
|
|
|
|
def test_ddim(self):
|
|
unet = self.dummy_uncond_unet
|
|
scheduler = DDIMScheduler()
|
|
|
|
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
|
|
# Warmup pass when using mps (see #372)
|
|
if torch_device == "mps":
|
|
_ = ddpm(num_inference_steps=1)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array(
|
|
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
|
|
)
|
|
tolerance = 1e-2 if torch_device != "mps" else 3e-2
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
|
|
|
|
def test_pndm_cifar10(self):
|
|
unet = self.dummy_uncond_unet
|
|
scheduler = PNDMScheduler()
|
|
|
|
pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
|
|
pndm.to(torch_device)
|
|
pndm.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = pndm(generator=generator, num_inference_steps=20, output_type="numpy").images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image_from_tuple = pndm(generator=generator, num_inference_steps=20, output_type="numpy", return_dict=False)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_ldm_text2img(self):
|
|
unet = self.dummy_cond_unet
|
|
scheduler = DDIMScheduler()
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
ldm = LDMTextToImagePipeline(vqvae=vae, bert=bert, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
|
|
ldm.to(torch_device)
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
# Warmup pass when using mps (see #372)
|
|
if torch_device == "mps":
|
|
generator = torch.manual_seed(0)
|
|
_ = ldm(
|
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=1, output_type="numpy"
|
|
).images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ldm(
|
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="numpy"
|
|
).images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image_from_tuple = ldm(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="numpy",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.5074, 0.5026, 0.4998, 0.4056, 0.3523, 0.4649, 0.5289, 0.5299, 0.4897])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_score_sde_ve_pipeline(self):
|
|
unet = self.dummy_uncond_unet
|
|
scheduler = ScoreSdeVeScheduler()
|
|
|
|
sde_ve = ScoreSdeVePipeline(unet=unet, scheduler=scheduler)
|
|
sde_ve.to(torch_device)
|
|
sde_ve.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator).images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image_from_tuple = sde_ve(num_inference_steps=2, output_type="numpy", generator=generator, return_dict=False)[
|
|
0
|
|
]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_ldm_uncond(self):
|
|
unet = self.dummy_uncond_unet
|
|
scheduler = DDIMScheduler()
|
|
vae = self.dummy_vq_model
|
|
|
|
ldm = LDMPipeline(unet=unet, vqvae=vae, scheduler=scheduler)
|
|
ldm.to(torch_device)
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
# Warmup pass when using mps (see #372)
|
|
if torch_device == "mps":
|
|
generator = torch.manual_seed(0)
|
|
_ = ldm(generator=generator, num_inference_steps=1, output_type="numpy").images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ldm(generator=generator, num_inference_steps=2, output_type="numpy").images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image_from_tuple = ldm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.8512, 0.818, 0.6411, 0.6808, 0.4465, 0.5618, 0.46, 0.6231, 0.5172])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_karras_ve_pipeline(self):
|
|
unet = self.dummy_uncond_unet
|
|
scheduler = KarrasVeScheduler()
|
|
|
|
pipe = KarrasVePipeline(unet=unet, scheduler=scheduler)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = pipe(num_inference_steps=2, generator=generator, output_type="numpy").images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image_from_tuple = pipe(num_inference_steps=2, generator=generator, output_type="numpy", return_dict=False)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_components(self):
|
|
"""Test that components property works correctly"""
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
image = self.dummy_image.cpu().permute(0, 2, 3, 1)[0]
|
|
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
|
|
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((128, 128))
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
inpaint = StableDiffusionInpaintPipelineLegacy(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
).to(torch_device)
|
|
img2img = StableDiffusionImg2ImgPipeline(**inpaint.components).to(torch_device)
|
|
text2img = StableDiffusionPipeline(**inpaint.components).to(torch_device)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=torch_device).manual_seed(0)
|
|
image_inpaint = inpaint(
|
|
[prompt],
|
|
generator=generator,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
init_image=init_image,
|
|
mask_image=mask_image,
|
|
).images
|
|
image_img2img = img2img(
|
|
[prompt],
|
|
generator=generator,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
init_image=init_image,
|
|
).images
|
|
image_text2img = text2img(
|
|
[prompt],
|
|
generator=generator,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
).images
|
|
|
|
assert image_inpaint.shape == (1, 32, 32, 3)
|
|
assert image_img2img.shape == (1, 32, 32, 3)
|
|
assert image_text2img.shape == (1, 128, 128, 3)
|
|
|
|
|
|
class PipelineTesterMixin(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_smart_download(self):
|
|
model_id = "hf-internal-testing/unet-pipeline-dummy"
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
_ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
|
|
local_repo_name = "--".join(["models"] + model_id.split("/"))
|
|
snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
|
|
snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])
|
|
|
|
# inspect all downloaded files to make sure that everything is included
|
|
assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
|
|
assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
|
|
assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
|
|
assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
|
|
assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
|
|
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
|
|
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
|
|
# let's make sure the super large numpy file:
|
|
# https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
|
|
# is not downloaded, but all the expected ones
|
|
assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))
|
|
|
|
def test_warning_unused_kwargs(self):
|
|
model_id = "hf-internal-testing/unet-pipeline-dummy"
|
|
logger = logging.get_logger("diffusers.pipeline_utils")
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
with CaptureLogger(logger) as cap_logger:
|
|
DiffusionPipeline.from_pretrained(model_id, not_used=True, cache_dir=tmpdirname, force_download=True)
|
|
|
|
assert cap_logger.out == "Keyword arguments {'not_used': True} not recognized.\n"
|
|
|
|
def test_from_pretrained_save_pretrained(self):
|
|
# 1. Load models
|
|
model = UNet2DModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
)
|
|
schedular = DDPMScheduler(num_train_timesteps=10)
|
|
|
|
ddpm = DDPMPipeline(model, schedular)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
ddpm.save_pretrained(tmpdirname)
|
|
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
|
|
new_ddpm.to(torch_device)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddpm(generator=generator, output_type="numpy").images
|
|
|
|
generator = generator.manual_seed(0)
|
|
new_image = new_ddpm(generator=generator, output_type="numpy").images
|
|
|
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
|
|
|
|
@slow
|
|
def test_from_pretrained_hub(self):
|
|
model_path = "google/ddpm-cifar10-32"
|
|
|
|
scheduler = DDPMScheduler(num_train_timesteps=10)
|
|
|
|
ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
|
|
ddpm_from_hub.to(torch_device)
|
|
ddpm_from_hub.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddpm(generator=generator, output_type="numpy").images
|
|
|
|
generator = generator.manual_seed(0)
|
|
new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
|
|
|
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
|
|
|
|
@slow
|
|
def test_from_pretrained_hub_pass_model(self):
|
|
model_path = "google/ddpm-cifar10-32"
|
|
|
|
scheduler = DDPMScheduler(num_train_timesteps=10)
|
|
|
|
# pass unet into DiffusionPipeline
|
|
unet = UNet2DModel.from_pretrained(model_path)
|
|
ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
|
|
ddpm_from_hub_custom_model.to(torch_device)
|
|
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
|
|
|
|
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
|
|
ddpm_from_hub.to(torch_device)
|
|
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddpm_from_hub_custom_model(generator=generator, output_type="numpy").images
|
|
|
|
generator = generator.manual_seed(0)
|
|
new_image = ddpm_from_hub(generator=generator, output_type="numpy").images
|
|
|
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't give the same forward pass"
|
|
|
|
@slow
|
|
def test_output_format(self):
|
|
model_path = "google/ddpm-cifar10-32"
|
|
|
|
pipe = DDIMPipeline.from_pretrained(model_path)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
images = pipe(generator=generator, output_type="numpy").images
|
|
assert images.shape == (1, 32, 32, 3)
|
|
assert isinstance(images, np.ndarray)
|
|
|
|
images = pipe(generator=generator, output_type="pil").images
|
|
assert isinstance(images, list)
|
|
assert len(images) == 1
|
|
assert isinstance(images[0], PIL.Image.Image)
|
|
|
|
# use PIL by default
|
|
images = pipe(generator=generator).images
|
|
assert isinstance(images, list)
|
|
assert isinstance(images[0], PIL.Image.Image)
|
|
|
|
@slow
|
|
def test_ddpm_cifar10(self):
|
|
model_id = "google/ddpm-cifar10-32"
|
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
scheduler = DDPMScheduler.from_config(model_id)
|
|
|
|
ddpm = DDPMPipeline(unet=unet, scheduler=scheduler)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddpm(generator=generator, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([0.41995, 0.35885, 0.19385, 0.38475, 0.3382, 0.2647, 0.41545, 0.3582, 0.33845])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_ddim_lsun(self):
|
|
model_id = "google/ddpm-ema-bedroom-256"
|
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
scheduler = DDIMScheduler.from_config(model_id)
|
|
|
|
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddpm(generator=generator, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_ddim_cifar10(self):
|
|
model_id = "google/ddpm-cifar10-32"
|
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
scheduler = DDIMScheduler()
|
|
|
|
ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
|
|
ddim.to(torch_device)
|
|
ddim.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddim(generator=generator, eta=0.0, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_pndm_cifar10(self):
|
|
model_id = "google/ddpm-cifar10-32"
|
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
scheduler = PNDMScheduler()
|
|
|
|
pndm = PNDMPipeline(unet=unet, scheduler=scheduler)
|
|
pndm.to(torch_device)
|
|
pndm.set_progress_bar_config(disable=None)
|
|
generator = torch.manual_seed(0)
|
|
image = pndm(generator=generator, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_ldm_text2img(self):
|
|
ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
|
|
ldm.to(torch_device)
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
image = ldm(
|
|
[prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="numpy"
|
|
).images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.9256, 0.9340, 0.8933, 0.9361, 0.9113, 0.8727, 0.9122, 0.8745, 0.8099])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_ldm_text2img_fast(self):
|
|
ldm = LDMTextToImagePipeline.from_pretrained("CompVis/ldm-text2im-large-256")
|
|
ldm.to(torch_device)
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
image = ldm(prompt, generator=generator, num_inference_steps=1, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.3163, 0.8670, 0.6465, 0.1865, 0.6291, 0.5139, 0.2824, 0.3723, 0.4344])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_score_sde_ve_pipeline(self):
|
|
model_id = "google/ncsnpp-church-256"
|
|
model = UNet2DModel.from_pretrained(model_id)
|
|
|
|
scheduler = ScoreSdeVeScheduler.from_config(model_id)
|
|
|
|
sde_ve = ScoreSdeVePipeline(unet=model, scheduler=scheduler)
|
|
sde_ve.to(torch_device)
|
|
sde_ve.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = sde_ve(num_inference_steps=10, output_type="numpy", generator=generator).images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
|
|
expected_slice = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_ldm_uncond(self):
|
|
ldm = LDMPipeline.from_pretrained("CompVis/ldm-celebahq-256")
|
|
ldm.to(torch_device)
|
|
ldm.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ldm(generator=generator, num_inference_steps=5, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.4399, 0.44975, 0.46825, 0.474, 0.4359, 0.4581, 0.45095, 0.4341, 0.4447])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_ddpm_ddim_equality(self):
|
|
model_id = "google/ddpm-cifar10-32"
|
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
ddpm_scheduler = DDPMScheduler()
|
|
ddim_scheduler = DDIMScheduler()
|
|
|
|
ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
|
|
ddim.to(torch_device)
|
|
ddim.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
ddpm_image = ddpm(generator=generator, output_type="numpy").images
|
|
|
|
generator = torch.manual_seed(0)
|
|
ddim_image = ddim(generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy").images
|
|
|
|
# the values aren't exactly equal, but the images look the same visually
|
|
assert np.abs(ddpm_image - ddim_image).max() < 1e-1
|
|
|
|
@unittest.skip("(Anton) The test is failing for large batch sizes, needs investigation")
|
|
def test_ddpm_ddim_equality_batched(self):
|
|
model_id = "google/ddpm-cifar10-32"
|
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
ddpm_scheduler = DDPMScheduler()
|
|
ddim_scheduler = DDIMScheduler()
|
|
|
|
ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
|
|
ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
|
|
ddim.to(torch_device)
|
|
ddim.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
ddpm_images = ddpm(batch_size=4, generator=generator, output_type="numpy").images
|
|
|
|
generator = torch.manual_seed(0)
|
|
ddim_images = ddim(
|
|
batch_size=4, generator=generator, num_inference_steps=1000, eta=1.0, output_type="numpy"
|
|
).images
|
|
|
|
# the values aren't exactly equal, but the images look the same visually
|
|
assert np.abs(ddpm_images - ddim_images).max() < 1e-1
|
|
|
|
@slow
|
|
def test_karras_ve_pipeline(self):
|
|
model_id = "google/ncsnpp-celebahq-256"
|
|
model = UNet2DModel.from_pretrained(model_id)
|
|
scheduler = KarrasVeScheduler()
|
|
|
|
pipe = KarrasVePipeline(unet=model, scheduler=scheduler)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = pipe(num_inference_steps=20, generator=generator, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.578, 0.5811, 0.5924, 0.5809, 0.587, 0.5886, 0.5861, 0.5802, 0.586])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
@slow
|
|
def test_stable_diffusion_onnx(self):
|
|
sd_pipe = OnnxStableDiffusionPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
|
|
)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
np.random.seed(0)
|
|
output = sd_pipe([prompt], guidance_scale=6.0, num_inference_steps=5, output_type="np")
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.3602, 0.3688, 0.3652, 0.3895, 0.3782, 0.3747, 0.3927, 0.4241, 0.4327])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
@slow
|
|
def test_stable_diffusion_img2img_onnx(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
)
|
|
init_image = init_image.resize((768, 512))
|
|
pipe = OnnxStableDiffusionImg2ImgPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
np.random.seed(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
init_image=init_image,
|
|
strength=0.75,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=8,
|
|
output_type="np",
|
|
)
|
|
images = output.images
|
|
image_slice = images[0, 255:258, 383:386, -1]
|
|
|
|
assert images.shape == (1, 512, 768, 3)
|
|
expected_slice = np.array([0.4830, 0.5242, 0.5603, 0.5016, 0.5131, 0.5111, 0.4928, 0.5025, 0.5055])
|
|
# TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2
|
|
|
|
@slow
|
|
def test_stable_diffusion_inpaint_onnx(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/in_paint/overture-creations-5sI6fQgYIuo.png"
|
|
)
|
|
mask_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/in_paint/overture-creations-5sI6fQgYIuo_mask.png"
|
|
)
|
|
|
|
pipe = OnnxStableDiffusionInpaintPipeline.from_pretrained(
|
|
"runwayml/stable-diffusion-inpainting", revision="onnx", provider="CPUExecutionProvider"
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A red cat sitting on a park bench"
|
|
|
|
np.random.seed(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
mask_image=mask_image,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=8,
|
|
output_type="np",
|
|
)
|
|
images = output.images
|
|
image_slice = images[0, 255:258, 255:258, -1]
|
|
|
|
assert images.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.2951, 0.2955, 0.2922, 0.2036, 0.1977, 0.2279, 0.1716, 0.1641, 0.1799])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
@slow
|
|
def test_stable_diffusion_onnx_intermediate_state(self):
|
|
number_of_steps = 0
|
|
|
|
def test_callback_fn(step: int, timestep: int, latents: np.ndarray) -> None:
|
|
test_callback_fn.has_been_called = True
|
|
nonlocal number_of_steps
|
|
number_of_steps += 1
|
|
if step == 0:
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
expected_slice = np.array(
|
|
[-0.5950, -0.3039, -1.1672, 0.1594, -1.1572, 0.6719, -1.9712, -0.0403, 0.9592]
|
|
)
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
|
|
elif step == 5:
|
|
assert latents.shape == (1, 4, 64, 64)
|
|
latents_slice = latents[0, -3:, -3:, -1]
|
|
expected_slice = np.array(
|
|
[-0.4776, -0.0119, -0.8519, -0.0275, -0.9764, 0.9820, -0.3843, 0.3788, 1.2264]
|
|
)
|
|
assert np.abs(latents_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
test_callback_fn.has_been_called = False
|
|
|
|
pipe = OnnxStableDiffusionPipeline.from_pretrained(
|
|
"CompVis/stable-diffusion-v1-4", revision="onnx", provider="CPUExecutionProvider"
|
|
)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "Andromeda galaxy in a bottle"
|
|
|
|
np.random.seed(0)
|
|
pipe(prompt=prompt, num_inference_steps=5, guidance_scale=7.5, callback=test_callback_fn, callback_steps=1)
|
|
assert test_callback_fn.has_been_called
|
|
assert number_of_steps == 6
|
|
|
|
@slow
|
|
@unittest.skipIf(torch_device == "cpu", "Stable diffusion is supposed to run on GPU")
|
|
def test_stable_diffusion_accelerate_load_works(self):
|
|
if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
|
|
return
|
|
|
|
if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
|
|
return
|
|
|
|
model_id = "CompVis/stable-diffusion-v1-4"
|
|
_ = StableDiffusionPipeline.from_pretrained(
|
|
model_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
|
|
).to(torch_device)
|
|
|
|
@slow
|
|
@unittest.skipIf(torch_device == "cpu", "This test is supposed to run on GPU")
|
|
def test_stable_diffusion_accelerate_load_reduces_memory_footprint(self):
|
|
if version.parse(version.parse(transformers.__version__).base_version) < version.parse("4.23"):
|
|
return
|
|
|
|
if version.parse(version.parse(accelerate.__version__).base_version) < version.parse("0.14"):
|
|
return
|
|
|
|
pipeline_id = "CompVis/stable-diffusion-v1-4"
|
|
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
tracemalloc.start()
|
|
pipeline_normal_load = StableDiffusionPipeline.from_pretrained(
|
|
pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True
|
|
)
|
|
pipeline_normal_load.to(torch_device)
|
|
_, peak_normal = tracemalloc.get_traced_memory()
|
|
tracemalloc.stop()
|
|
|
|
del pipeline_normal_load
|
|
torch.cuda.empty_cache()
|
|
gc.collect()
|
|
|
|
tracemalloc.start()
|
|
_ = StableDiffusionPipeline.from_pretrained(
|
|
pipeline_id, revision="fp16", torch_dtype=torch.float16, use_auth_token=True, device_map="auto"
|
|
)
|
|
_, peak_accelerate = tracemalloc.get_traced_memory()
|
|
|
|
tracemalloc.stop()
|
|
|
|
assert peak_accelerate < peak_normal
|