225 lines
9.2 KiB
Python
225 lines
9.2 KiB
Python
import argparse
|
|
import os
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
from accelerate import Accelerator
|
|
from accelerate.logging import get_logger
|
|
from datasets import load_dataset
|
|
from diffusers import DDIMPipeline, DDIMScheduler, UNetModel
|
|
from diffusers.hub_utils import init_git_repo, push_to_hub
|
|
from diffusers.optimization import get_scheduler
|
|
from diffusers.training_utils import EMAModel
|
|
from torchvision.transforms import (
|
|
CenterCrop,
|
|
Compose,
|
|
InterpolationMode,
|
|
Normalize,
|
|
RandomHorizontalFlip,
|
|
Resize,
|
|
ToTensor,
|
|
)
|
|
from tqdm.auto import tqdm
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def main(args):
|
|
logging_dir = os.path.join(args.output_dir, args.logging_dir)
|
|
accelerator = Accelerator(mixed_precision=args.mixed_precision, log_with="tensorboard", logging_dir=logging_dir)
|
|
|
|
model = UNetModel(
|
|
attn_resolutions=(16,),
|
|
ch=128,
|
|
ch_mult=(1, 2, 4, 8),
|
|
dropout=0.0,
|
|
num_res_blocks=2,
|
|
resamp_with_conv=True,
|
|
resolution=args.resolution,
|
|
)
|
|
noise_scheduler = DDIMScheduler(timesteps=1000, tensor_format="pt")
|
|
optimizer = torch.optim.AdamW(
|
|
model.parameters(),
|
|
lr=args.learning_rate,
|
|
betas=(args.adam_beta1, args.adam_beta2),
|
|
weight_decay=args.adam_weight_decay,
|
|
eps=args.adam_epsilon,
|
|
)
|
|
|
|
augmentations = Compose(
|
|
[
|
|
Resize(args.resolution, interpolation=InterpolationMode.BILINEAR),
|
|
CenterCrop(args.resolution),
|
|
RandomHorizontalFlip(),
|
|
ToTensor(),
|
|
Normalize([0.5], [0.5]),
|
|
]
|
|
)
|
|
dataset = load_dataset(args.dataset, split="train")
|
|
|
|
def transforms(examples):
|
|
images = [augmentations(image.convert("RGB")) for image in examples["image"]]
|
|
return {"input": images}
|
|
|
|
dataset.set_transform(transforms)
|
|
train_dataloader = torch.utils.data.DataLoader(dataset, batch_size=args.train_batch_size, shuffle=True)
|
|
|
|
lr_scheduler = get_scheduler(
|
|
args.lr_scheduler,
|
|
optimizer=optimizer,
|
|
num_warmup_steps=args.lr_warmup_steps,
|
|
num_training_steps=(len(train_dataloader) * args.num_epochs) // args.gradient_accumulation_steps,
|
|
)
|
|
|
|
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
|
|
model, optimizer, train_dataloader, lr_scheduler
|
|
)
|
|
|
|
ema_model = EMAModel(model, inv_gamma=args.ema_inv_gamma, power=args.ema_power, max_value=args.ema_max_decay)
|
|
|
|
if args.push_to_hub:
|
|
repo = init_git_repo(args, at_init=True)
|
|
|
|
if accelerator.is_main_process:
|
|
run = os.path.split(__file__)[-1].split(".")[0]
|
|
accelerator.init_trackers(run)
|
|
|
|
# Train!
|
|
is_distributed = torch.distributed.is_available() and torch.distributed.is_initialized()
|
|
world_size = torch.distributed.get_world_size() if is_distributed else 1
|
|
total_train_batch_size = args.train_batch_size * args.gradient_accumulation_steps * world_size
|
|
max_steps = len(train_dataloader) // args.gradient_accumulation_steps * args.num_epochs
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataloader.dataset)}")
|
|
logger.info(f" Num Epochs = {args.num_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_train_batch_size}")
|
|
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
|
|
logger.info(f" Total optimization steps = {max_steps}")
|
|
|
|
global_step = 0
|
|
for epoch in range(args.num_epochs):
|
|
model.train()
|
|
progress_bar = tqdm(total=len(train_dataloader), disable=not accelerator.is_local_main_process)
|
|
progress_bar.set_description(f"Epoch {epoch}")
|
|
for step, batch in enumerate(train_dataloader):
|
|
clean_images = batch["input"]
|
|
noise_samples = torch.randn(clean_images.shape).to(clean_images.device)
|
|
bsz = clean_images.shape[0]
|
|
timesteps = torch.randint(0, noise_scheduler.timesteps, (bsz,), device=clean_images.device).long()
|
|
|
|
# add noise onto the clean images according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_images = noise_scheduler.add_noise(clean_images, noise_samples, timesteps)
|
|
|
|
if step % args.gradient_accumulation_steps != 0:
|
|
with accelerator.no_sync(model):
|
|
output = model(noisy_images, timesteps)
|
|
# predict the noise residual
|
|
loss = F.mse_loss(output, noise_samples)
|
|
loss = loss / args.gradient_accumulation_steps
|
|
accelerator.backward(loss)
|
|
else:
|
|
output = model(noisy_images, timesteps)
|
|
# predict the noise residual
|
|
loss = F.mse_loss(output, noise_samples)
|
|
loss = loss / args.gradient_accumulation_steps
|
|
accelerator.backward(loss)
|
|
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
|
|
optimizer.step()
|
|
lr_scheduler.step()
|
|
ema_model.step(model, global_step)
|
|
optimizer.zero_grad()
|
|
progress_bar.update(1)
|
|
progress_bar.set_postfix(
|
|
loss=loss.detach().item(), lr=optimizer.param_groups[0]["lr"], ema_decay=ema_model.decay
|
|
)
|
|
accelerator.log(
|
|
{
|
|
"train_loss": loss.detach().item(),
|
|
"epoch": epoch,
|
|
"ema_decay": ema_model.decay,
|
|
"step": global_step,
|
|
},
|
|
step=global_step,
|
|
)
|
|
global_step += 1
|
|
progress_bar.close()
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
# Generate a sample image for visual inspection
|
|
if accelerator.is_main_process:
|
|
with torch.no_grad():
|
|
pipeline = DDIMPipeline(
|
|
unet=accelerator.unwrap_model(ema_model.averaged_model),
|
|
noise_scheduler=noise_scheduler,
|
|
)
|
|
|
|
generator = torch.manual_seed(0)
|
|
# run pipeline in inference (sample random noise and denoise)
|
|
images = pipeline(generator=generator, batch_size=args.eval_batch_size, num_inference_steps=50)
|
|
|
|
# denormalize the images and save to tensorboard
|
|
images_processed = (images.cpu() + 1.0) * 127.5
|
|
images_processed = images_processed.clamp(0, 255).type(torch.uint8).numpy()
|
|
|
|
accelerator.trackers[0].writer.add_images("test_samples", images_processed, epoch)
|
|
|
|
# save the model
|
|
if args.push_to_hub:
|
|
push_to_hub(args, pipeline, repo, commit_message=f"Epoch {epoch}", blocking=False)
|
|
else:
|
|
pipeline.save_pretrained(args.output_dir)
|
|
accelerator.wait_for_everyone()
|
|
|
|
accelerator.end_training()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
parser.add_argument("--local_rank", type=int, default=-1)
|
|
parser.add_argument("--dataset", type=str, default="huggan/flowers-102-categories")
|
|
parser.add_argument("--output_dir", type=str, default="ddpm-model")
|
|
parser.add_argument("--overwrite_output_dir", action="store_true")
|
|
parser.add_argument("--resolution", type=int, default=64)
|
|
parser.add_argument("--train_batch_size", type=int, default=16)
|
|
parser.add_argument("--eval_batch_size", type=int, default=16)
|
|
parser.add_argument("--num_epochs", type=int, default=100)
|
|
parser.add_argument("--gradient_accumulation_steps", type=int, default=1)
|
|
parser.add_argument("--learning_rate", type=float, default=1e-4)
|
|
parser.add_argument("--lr_scheduler", type=str, default="cosine")
|
|
parser.add_argument("--lr_warmup_steps", type=int, default=500)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.95)
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999)
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-6)
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-3)
|
|
parser.add_argument("--ema_inv_gamma", type=float, default=1.0)
|
|
parser.add_argument("--ema_power", type=float, default=3 / 4)
|
|
parser.add_argument("--ema_max_decay", type=float, default=0.9999)
|
|
parser.add_argument("--push_to_hub", action="store_true")
|
|
parser.add_argument("--hub_token", type=str, default=None)
|
|
parser.add_argument("--hub_model_id", type=str, default=None)
|
|
parser.add_argument("--hub_private_repo", action="store_true")
|
|
parser.add_argument("--logging_dir", type=str, default="logs")
|
|
parser.add_argument(
|
|
"--mixed_precision",
|
|
type=str,
|
|
default="no",
|
|
choices=["no", "fp16", "bf16"],
|
|
help=(
|
|
"Whether to use mixed precision. Choose"
|
|
"between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10."
|
|
"and an Nvidia Ampere GPU."
|
|
),
|
|
)
|
|
|
|
args = parser.parse_args()
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
main(args)
|