166 lines
5.6 KiB
Python
166 lines
5.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
import tempfile
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers.testing_utils import torch_device
|
|
from diffusers.training_utils import EMAModel
|
|
|
|
|
|
class ModelTesterMixin:
|
|
def test_from_pretrained_save_pretrained(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_pretrained(tmpdirname)
|
|
new_model = self.model_class.from_pretrained(tmpdirname)
|
|
new_model.to(torch_device)
|
|
|
|
with torch.no_grad():
|
|
image = model(**inputs_dict)
|
|
if isinstance(image, dict):
|
|
image = image["sample"]
|
|
|
|
new_image = new_model(**inputs_dict)
|
|
|
|
if isinstance(new_image, dict):
|
|
new_image = new_image["sample"]
|
|
|
|
max_diff = (image - new_image).abs().sum().item()
|
|
self.assertLessEqual(max_diff, 5e-5, "Models give different forward passes")
|
|
|
|
def test_determinism(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
with torch.no_grad():
|
|
first = model(**inputs_dict)
|
|
if isinstance(first, dict):
|
|
first = first["sample"]
|
|
|
|
second = model(**inputs_dict)
|
|
if isinstance(second, dict):
|
|
second = second["sample"]
|
|
|
|
out_1 = first.cpu().numpy()
|
|
out_2 = second.cpu().numpy()
|
|
out_1 = out_1[~np.isnan(out_1)]
|
|
out_2 = out_2[~np.isnan(out_2)]
|
|
max_diff = np.amax(np.abs(out_1 - out_2))
|
|
self.assertLessEqual(max_diff, 1e-5)
|
|
|
|
def test_output(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output["sample"]
|
|
|
|
self.assertIsNotNone(output)
|
|
expected_shape = inputs_dict["sample"].shape
|
|
self.assertEqual(output.shape, expected_shape, "Input and output shapes do not match")
|
|
|
|
def test_forward_signature(self):
|
|
init_dict, _ = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
signature = inspect.signature(model.forward)
|
|
# signature.parameters is an OrderedDict => so arg_names order is deterministic
|
|
arg_names = [*signature.parameters.keys()]
|
|
|
|
expected_arg_names = ["sample", "timestep"]
|
|
self.assertListEqual(arg_names[:2], expected_arg_names)
|
|
|
|
def test_model_from_config(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.eval()
|
|
|
|
# test if the model can be loaded from the config
|
|
# and has all the expected shape
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
model.save_config(tmpdirname)
|
|
new_model = self.model_class.from_config(tmpdirname)
|
|
new_model.to(torch_device)
|
|
new_model.eval()
|
|
|
|
# check if all paramters shape are the same
|
|
for param_name in model.state_dict().keys():
|
|
param_1 = model.state_dict()[param_name]
|
|
param_2 = new_model.state_dict()[param_name]
|
|
self.assertEqual(param_1.shape, param_2.shape)
|
|
|
|
with torch.no_grad():
|
|
output_1 = model(**inputs_dict)
|
|
|
|
if isinstance(output_1, dict):
|
|
output_1 = output_1["sample"]
|
|
|
|
output_2 = new_model(**inputs_dict)
|
|
|
|
if isinstance(output_2, dict):
|
|
output_2 = output_2["sample"]
|
|
|
|
self.assertEqual(output_1.shape, output_2.shape)
|
|
|
|
def test_training(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.train()
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output["sample"]
|
|
|
|
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
loss.backward()
|
|
|
|
def test_ema_training(self):
|
|
init_dict, inputs_dict = self.prepare_init_args_and_inputs_for_common()
|
|
|
|
model = self.model_class(**init_dict)
|
|
model.to(torch_device)
|
|
model.train()
|
|
ema_model = EMAModel(model, device=torch_device)
|
|
|
|
output = model(**inputs_dict)
|
|
|
|
if isinstance(output, dict):
|
|
output = output["sample"]
|
|
|
|
noise = torch.randn((inputs_dict["sample"].shape[0],) + self.output_shape).to(torch_device)
|
|
loss = torch.nn.functional.mse_loss(output, noise)
|
|
loss.backward()
|
|
ema_model.step(model)
|