76f9b52289
* New unet, gradient accumulation * Save every n epochs * Remove find_unused_params, hooray! * Update examples * Switch to DDPM completely |
||
---|---|---|
.. | ||
experimental | ||
README.md | ||
train_unconditional.py |
README.md
Training examples
Unconditional Flowers
The command to train a DDPM UNet model on the Oxford Flowers dataset:
accelerate launch train_unconditional.py \
--dataset="huggan/flowers-102-categories" \
--resolution=64 \
--output_dir="ddpm-ema-flowers-64" \
--train_batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-4 \
--lr_warmup_steps=500 \
--mixed_precision=no \
--push_to_hub
A full training run takes 2 hours on 4xV100 GPUs.
Unconditional Pokemon
The command to train a DDPM UNet model on the Pokemon dataset:
accelerate launch train_unconditional.py \
--dataset="huggan/pokemon" \
--resolution=64 \
--output_dir="ddpm-ema-pokemon-64" \
--train_batch_size=16 \
--num_epochs=100 \
--gradient_accumulation_steps=1 \
--learning_rate=1e-4 \
--lr_warmup_steps=500 \
--mixed_precision=no \
--push_to_hub
A full training run takes 2 hours on 4xV100 GPUs.