186 lines
7.4 KiB
Python
186 lines
7.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2020 The HuggingFace Inc. team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import collections
|
|
import importlib.util
|
|
import os
|
|
import re
|
|
|
|
|
|
# All paths are set with the intent you should run this script from the root of the repo with the command
|
|
# python utils/check_table.py
|
|
TRANSFORMERS_PATH = "src/diffusers"
|
|
PATH_TO_DOCS = "docs/source/en"
|
|
REPO_PATH = "."
|
|
|
|
|
|
def _find_text_in_file(filename, start_prompt, end_prompt):
|
|
"""
|
|
Find the text in `filename` between a line beginning with `start_prompt` and before `end_prompt`, removing empty
|
|
lines.
|
|
"""
|
|
with open(filename, "r", encoding="utf-8", newline="\n") as f:
|
|
lines = f.readlines()
|
|
# Find the start prompt.
|
|
start_index = 0
|
|
while not lines[start_index].startswith(start_prompt):
|
|
start_index += 1
|
|
start_index += 1
|
|
|
|
end_index = start_index
|
|
while not lines[end_index].startswith(end_prompt):
|
|
end_index += 1
|
|
end_index -= 1
|
|
|
|
while len(lines[start_index]) <= 1:
|
|
start_index += 1
|
|
while len(lines[end_index]) <= 1:
|
|
end_index -= 1
|
|
end_index += 1
|
|
return "".join(lines[start_index:end_index]), start_index, end_index, lines
|
|
|
|
|
|
# Add here suffixes that are used to identify models, separated by |
|
|
ALLOWED_MODEL_SUFFIXES = "Model|Encoder|Decoder|ForConditionalGeneration"
|
|
# Regexes that match TF/Flax/PT model names.
|
|
_re_tf_models = re.compile(r"TF(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
|
_re_flax_models = re.compile(r"Flax(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
|
# Will match any TF or Flax model too so need to be in an else branch afterthe two previous regexes.
|
|
_re_pt_models = re.compile(r"(.*)(?:Model|Encoder|Decoder|ForConditionalGeneration)")
|
|
|
|
|
|
# This is to make sure the diffusers module imported is the one in the repo.
|
|
spec = importlib.util.spec_from_file_location(
|
|
"diffusers",
|
|
os.path.join(TRANSFORMERS_PATH, "__init__.py"),
|
|
submodule_search_locations=[TRANSFORMERS_PATH],
|
|
)
|
|
diffusers_module = spec.loader.load_module()
|
|
|
|
|
|
# Thanks to https://stackoverflow.com/questions/29916065/how-to-do-camelcase-split-in-python
|
|
def camel_case_split(identifier):
|
|
"Split a camelcased `identifier` into words."
|
|
matches = re.finditer(".+?(?:(?<=[a-z])(?=[A-Z])|(?<=[A-Z])(?=[A-Z][a-z])|$)", identifier)
|
|
return [m.group(0) for m in matches]
|
|
|
|
|
|
def _center_text(text, width):
|
|
text_length = 2 if text == "✅" or text == "❌" else len(text)
|
|
left_indent = (width - text_length) // 2
|
|
right_indent = width - text_length - left_indent
|
|
return " " * left_indent + text + " " * right_indent
|
|
|
|
|
|
def get_model_table_from_auto_modules():
|
|
"""Generates an up-to-date model table from the content of the auto modules."""
|
|
# Dictionary model names to config.
|
|
config_mapping_names = diffusers_module.models.auto.configuration_auto.CONFIG_MAPPING_NAMES
|
|
model_name_to_config = {
|
|
name: config_mapping_names[code]
|
|
for code, name in diffusers_module.MODEL_NAMES_MAPPING.items()
|
|
if code in config_mapping_names
|
|
}
|
|
model_name_to_prefix = {name: config.replace("ConfigMixin", "") for name, config in model_name_to_config.items()}
|
|
|
|
# Dictionaries flagging if each model prefix has a slow/fast tokenizer, backend in PT/TF/Flax.
|
|
slow_tokenizers = collections.defaultdict(bool)
|
|
fast_tokenizers = collections.defaultdict(bool)
|
|
pt_models = collections.defaultdict(bool)
|
|
tf_models = collections.defaultdict(bool)
|
|
flax_models = collections.defaultdict(bool)
|
|
|
|
# Let's lookup through all diffusers object (once).
|
|
for attr_name in dir(diffusers_module):
|
|
lookup_dict = None
|
|
if attr_name.endswith("Tokenizer"):
|
|
lookup_dict = slow_tokenizers
|
|
attr_name = attr_name[:-9]
|
|
elif attr_name.endswith("TokenizerFast"):
|
|
lookup_dict = fast_tokenizers
|
|
attr_name = attr_name[:-13]
|
|
elif _re_tf_models.match(attr_name) is not None:
|
|
lookup_dict = tf_models
|
|
attr_name = _re_tf_models.match(attr_name).groups()[0]
|
|
elif _re_flax_models.match(attr_name) is not None:
|
|
lookup_dict = flax_models
|
|
attr_name = _re_flax_models.match(attr_name).groups()[0]
|
|
elif _re_pt_models.match(attr_name) is not None:
|
|
lookup_dict = pt_models
|
|
attr_name = _re_pt_models.match(attr_name).groups()[0]
|
|
|
|
if lookup_dict is not None:
|
|
while len(attr_name) > 0:
|
|
if attr_name in model_name_to_prefix.values():
|
|
lookup_dict[attr_name] = True
|
|
break
|
|
# Try again after removing the last word in the name
|
|
attr_name = "".join(camel_case_split(attr_name)[:-1])
|
|
|
|
# Let's build that table!
|
|
model_names = list(model_name_to_config.keys())
|
|
model_names.sort(key=str.lower)
|
|
columns = ["Model", "Tokenizer slow", "Tokenizer fast", "PyTorch support", "TensorFlow support", "Flax Support"]
|
|
# We'll need widths to properly display everything in the center (+2 is to leave one extra space on each side).
|
|
widths = [len(c) + 2 for c in columns]
|
|
widths[0] = max([len(name) for name in model_names]) + 2
|
|
|
|
# Build the table per se
|
|
table = "|" + "|".join([_center_text(c, w) for c, w in zip(columns, widths)]) + "|\n"
|
|
# Use ":-----:" format to center-aligned table cell texts
|
|
table += "|" + "|".join([":" + "-" * (w - 2) + ":" for w in widths]) + "|\n"
|
|
|
|
check = {True: "✅", False: "❌"}
|
|
for name in model_names:
|
|
prefix = model_name_to_prefix[name]
|
|
line = [
|
|
name,
|
|
check[slow_tokenizers[prefix]],
|
|
check[fast_tokenizers[prefix]],
|
|
check[pt_models[prefix]],
|
|
check[tf_models[prefix]],
|
|
check[flax_models[prefix]],
|
|
]
|
|
table += "|" + "|".join([_center_text(l, w) for l, w in zip(line, widths)]) + "|\n"
|
|
return table
|
|
|
|
|
|
def check_model_table(overwrite=False):
|
|
"""Check the model table in the index.rst is consistent with the state of the lib and maybe `overwrite`."""
|
|
current_table, start_index, end_index, lines = _find_text_in_file(
|
|
filename=os.path.join(PATH_TO_DOCS, "index.mdx"),
|
|
start_prompt="<!--This table is updated automatically from the auto modules",
|
|
end_prompt="<!-- End table-->",
|
|
)
|
|
new_table = get_model_table_from_auto_modules()
|
|
|
|
if current_table != new_table:
|
|
if overwrite:
|
|
with open(os.path.join(PATH_TO_DOCS, "index.mdx"), "w", encoding="utf-8", newline="\n") as f:
|
|
f.writelines(lines[:start_index] + [new_table] + lines[end_index:])
|
|
else:
|
|
raise ValueError(
|
|
"The model table in the `index.mdx` has not been updated. Run `make fix-copies` to fix this."
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.")
|
|
args = parser.parse_args()
|
|
|
|
check_model_table(args.fix_and_overwrite)
|