diffusers/tests/test_scheduler.py

856 lines
35 KiB
Python
Executable File

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tempfile
import unittest
from typing import Dict, List, Tuple
import numpy as np
import torch
from diffusers import DDIMScheduler, DDPMScheduler, PNDMScheduler, ScoreSdeVeScheduler
torch.backends.cuda.matmul.allow_tf32 = False
class SchedulerCommonTest(unittest.TestCase):
scheduler_classes = ()
forward_default_kwargs = ()
@property
def dummy_sample(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
@property
def dummy_sample_deter(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
num_elems = batch_size * num_channels * height * width
sample = torch.arange(num_elems)
sample = sample.reshape(num_channels, height, width, batch_size)
sample = sample / num_elems
sample = sample.permute(3, 0, 1, 2)
return sample
def get_scheduler_config(self):
raise NotImplementedError
def dummy_model(self):
def model(sample, t, *args):
return sample * t / (t + 1)
return model
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
torch.manual_seed(0)
output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample
torch.manual_seed(0)
new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
new_scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
torch.manual_seed(0)
output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
torch.manual_seed(0)
new_output = new_scheduler.step(residual, 1, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output_0 = scheduler.step(residual, 0, sample, **kwargs).prev_sample
output_1 = scheduler.step(residual, 1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_pytorch_equal_numpy(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample_pt = self.dummy_sample
residual_pt = 0.1 * sample_pt
sample = sample_pt.numpy()
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(tensor_format="np", **scheduler_config)
scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
scheduler_pt.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output = scheduler.step(residual, 1, sample, **kwargs).prev_sample
output_pt = scheduler_pt.step(residual_pt, 1, sample_pt, **kwargs).prev_sample
assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
def test_scheduler_outputs_equivalence(self):
def set_nan_tensor_to_zero(t):
t[t != t] = 0
return t
def recursive_check(tuple_object, dict_object):
if isinstance(tuple_object, (List, Tuple)):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif isinstance(tuple_object, Dict):
for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()):
recursive_check(tuple_iterable_value, dict_iterable_value)
elif tuple_object is None:
return
else:
self.assertTrue(
torch.allclose(
set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5
),
msg=(
"Tuple and dict output are not equal. Difference:"
f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:"
f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has"
f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}."
),
)
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
outputs_dict = scheduler.step(residual, 0, sample, **kwargs)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
outputs_tuple = scheduler.step(residual, 0, sample, return_dict=False, **kwargs)
recursive_check(outputs_tuple, outputs_dict)
class DDPMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DDPMScheduler,)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"variance_type": "fixed_small",
"clip_sample": True,
"tensor_format": "pt",
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_variance_type(self):
for variance in ["fixed_small", "fixed_large", "other"]:
self.check_over_configs(variance_type=variance)
def test_clip_sample(self):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=clip_sample)
def test_time_indices(self):
for t in [0, 500, 999]:
self.check_over_forward(time_step=t)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
assert torch.sum(torch.abs(scheduler._get_variance(0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487) - 0.00979)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999) - 0.02)) < 1e-5
# TODO Make DDPM Numpy compatible
def test_pytorch_equal_numpy(self):
pass
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_trained_timesteps = len(scheduler)
model = self.dummy_model()
sample = self.dummy_sample_deter
generator = torch.manual_seed(0)
for t in reversed(range(num_trained_timesteps)):
# 1. predict noise residual
residual = model(sample, t)
# 2. predict previous mean of sample x_t-1
pred_prev_sample = scheduler.step(residual, t, sample, generator=generator).prev_sample
# if t > 0:
# noise = self.dummy_sample_deter
# variance = scheduler.get_variance(t) ** (0.5) * noise
#
# sample = pred_prev_sample + variance
sample = pred_prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 258.9070) < 1e-2
assert abs(result_mean.item() - 0.3374) < 1e-3
class DDIMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (DDIMScheduler,)
forward_default_kwargs = (("eta", 0.0), ("num_inference_steps", 50))
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
"clip_sample": True,
}
config.update(**kwargs)
return config
def test_timesteps(self):
for timesteps in [100, 500, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1], [0.002, 0.02, 0.2, 2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_clip_sample(self):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=clip_sample)
def test_time_indices(self):
for t in [1, 10, 49]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 10, 50], [10, 50, 500]):
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
def test_eta(self):
for t, eta in zip([1, 10, 49], [0.0, 0.5, 1.0]):
self.check_over_forward(time_step=t, eta=eta)
def test_variance(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(420, 400) - 0.14771)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(980, 960) - 0.32460)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(0, 0) - 0.0)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487, 486) - 0.00979)) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999, 998) - 0.02)) < 1e-5
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps, eta = 10, 0.0
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for t in scheduler.timesteps:
residual = model(sample, t)
sample = scheduler.step(residual, t, sample, eta).prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 172.0067) < 1e-2
assert abs(result_mean.item() - 0.223967) < 1e-3
class PNDMSchedulerTest(SchedulerCommonTest):
scheduler_classes = (PNDMScheduler,)
forward_default_kwargs = (("num_inference_steps", 50),)
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 1000,
"beta_start": 0.0001,
"beta_end": 0.02,
"beta_schedule": "linear",
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
scheduler.ets = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals
new_scheduler.ets = dummy_past_residuals[:]
output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_from_pretrained_save_pretrained(self):
pass
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
sample = self.dummy_sample
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residuals (must be after setting timesteps)
scheduler.ets = dummy_past_residuals[:]
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
# copy over dummy past residuals
new_scheduler.set_timesteps(num_inference_steps)
# copy over dummy past residual (must be after setting timesteps)
new_scheduler.ets = dummy_past_residuals[:]
output = scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_prk(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
new_output = new_scheduler.step_plms(residual, time_step, sample, **kwargs).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
def test_pytorch_equal_numpy(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
sample_pt = self.dummy_sample
residual_pt = 0.1 * sample_pt
dummy_past_residuals_pt = [residual_pt + 0.2, residual_pt + 0.15, residual_pt + 0.1, residual_pt + 0.05]
sample = sample_pt.numpy()
residual = 0.1 * sample
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(tensor_format="np", **scheduler_config)
scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
scheduler_pt.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
scheduler.ets = dummy_past_residuals[:]
scheduler_pt.ets = dummy_past_residuals_pt[:]
output = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
output_pt = scheduler_pt.step_prk(residual_pt, 1, sample_pt, **kwargs).prev_sample
assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
output = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
output_pt = scheduler_pt.step_plms(residual_pt, 1, sample_pt, **kwargs).prev_sample
assert np.sum(np.abs(output - output_pt.numpy())) < 1e-4, "Scheduler outputs are not identical"
def test_set_format(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(tensor_format="np", **scheduler_config)
scheduler_pt = scheduler_class(tensor_format="pt", **scheduler_config)
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
scheduler_pt.set_timesteps(num_inference_steps)
for key, value in vars(scheduler).items():
# we only allow `ets` attr to be a list
assert not isinstance(value, list) or key in [
"ets"
], f"Scheduler is not correctly set to np format, the attribute {key} is {type(value)}"
# check if `scheduler.set_format` does convert correctly attrs to pt format
for key, value in vars(scheduler_pt).items():
# we only allow `ets` attr to be a list
assert not isinstance(value, list) or key in [
"ets"
], f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"
assert not isinstance(
value, np.ndarray
), f"Scheduler is not correctly set to pt format, the attribute {key} is {type(value)}"
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
# copy over dummy past residuals (must be done after set_timesteps)
dummy_past_residuals = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05]
scheduler.ets = dummy_past_residuals[:]
output_0 = scheduler.step_prk(residual, 0, sample, **kwargs).prev_sample
output_1 = scheduler.step_prk(residual, 1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
output_0 = scheduler.step_plms(residual, 0, sample, **kwargs).prev_sample
output_1 = scheduler.step_plms(residual, 1, sample, **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)
def test_timesteps(self):
for timesteps in [100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_betas(self):
for beta_start, beta_end in zip([0.0001, 0.001, 0.01], [0.002, 0.02, 0.2]):
self.check_over_configs(beta_start=beta_start, beta_end=beta_end)
def test_schedules(self):
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=schedule)
def test_time_indices(self):
for t in [1, 5, 10]:
self.check_over_forward(time_step=t)
def test_inference_steps(self):
for t, num_inference_steps in zip([1, 5, 10], [10, 50, 100]):
self.check_over_forward(time_step=t, num_inference_steps=num_inference_steps)
def test_pow_of_3_inference_steps(self):
# earlier version of set_timesteps() caused an error indexing alpha's with inference steps as power of 3
num_inference_steps = 27
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.set_timesteps(num_inference_steps)
# before power of 3 fix, would error on first step, so we only need to do two
for i, t in enumerate(scheduler.prk_timesteps[:2]):
sample = scheduler.step_prk(residual, t, sample).prev_sample
def test_inference_plms_no_past_residuals(self):
with self.assertRaises(ValueError):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
scheduler.step_plms(self.dummy_sample, 1, self.dummy_sample).prev_sample
def test_full_loop_no_noise(self):
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 10
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_timesteps(num_inference_steps)
for i, t in enumerate(scheduler.prk_timesteps):
residual = model(sample, t)
sample = scheduler.step_prk(residual, i, sample).prev_sample
for i, t in enumerate(scheduler.plms_timesteps):
residual = model(sample, t)
sample = scheduler.step_plms(residual, i, sample).prev_sample
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert abs(result_sum.item() - 428.8788) < 1e-2
assert abs(result_mean.item() - 0.5584) < 1e-3
class ScoreSdeVeSchedulerTest(unittest.TestCase):
# TODO adapt with class SchedulerCommonTest (scheduler needs Numpy Integration)
scheduler_classes = (ScoreSdeVeScheduler,)
forward_default_kwargs = ()
@property
def dummy_sample(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
sample = torch.rand((batch_size, num_channels, height, width))
return sample
@property
def dummy_sample_deter(self):
batch_size = 4
num_channels = 3
height = 8
width = 8
num_elems = batch_size * num_channels * height * width
sample = torch.arange(num_elems)
sample = sample.reshape(num_channels, height, width, batch_size)
sample = sample / num_elems
sample = sample.permute(3, 0, 1, 2)
return sample
def dummy_model(self):
def model(sample, t, *args):
return sample * t / (t + 1)
return model
def get_scheduler_config(self, **kwargs):
config = {
"num_train_timesteps": 2000,
"snr": 0.15,
"sigma_min": 0.01,
"sigma_max": 1348,
"sampling_eps": 1e-5,
"tensor_format": "pt", # TODO add test for tensor formats
}
config.update(**kwargs)
return config
def check_over_configs(self, time_step=0, **config):
kwargs = dict(self.forward_default_kwargs)
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config(**config)
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
output = scheduler.step_pred(
residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
new_output = new_scheduler.step_pred(
residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
new_output = new_scheduler.step_correct(
residual, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
def check_over_forward(self, time_step=0, **forward_kwargs):
kwargs = dict(self.forward_default_kwargs)
kwargs.update(forward_kwargs)
for scheduler_class in self.scheduler_classes:
sample = self.dummy_sample
residual = 0.1 * sample
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
with tempfile.TemporaryDirectory() as tmpdirname:
scheduler.save_config(tmpdirname)
new_scheduler = scheduler_class.from_config(tmpdirname)
output = scheduler.step_pred(
residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
new_output = new_scheduler.step_pred(
residual, time_step, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical"
output = scheduler.step_correct(residual, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
new_output = new_scheduler.step_correct(
residual, sample, generator=torch.manual_seed(0), **kwargs
).prev_sample
assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler correction are not identical"
def test_timesteps(self):
for timesteps in [10, 100, 1000]:
self.check_over_configs(num_train_timesteps=timesteps)
def test_sigmas(self):
for sigma_min, sigma_max in zip([0.0001, 0.001, 0.01], [1, 100, 1000]):
self.check_over_configs(sigma_min=sigma_min, sigma_max=sigma_max)
def test_time_indices(self):
for t in [0.1, 0.5, 0.75]:
self.check_over_forward(time_step=t)
def test_full_loop_no_noise(self):
kwargs = dict(self.forward_default_kwargs)
scheduler_class = self.scheduler_classes[0]
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
num_inference_steps = 3
model = self.dummy_model()
sample = self.dummy_sample_deter
scheduler.set_sigmas(num_inference_steps)
scheduler.set_timesteps(num_inference_steps)
generator = torch.manual_seed(0)
for i, t in enumerate(scheduler.timesteps):
sigma_t = scheduler.sigmas[i]
for _ in range(scheduler.config.correct_steps):
with torch.no_grad():
model_output = model(sample, sigma_t)
sample = scheduler.step_correct(model_output, sample, generator=generator, **kwargs).prev_sample
with torch.no_grad():
model_output = model(sample, sigma_t)
output = scheduler.step_pred(model_output, t, sample, generator=generator, **kwargs)
sample, _ = output.prev_sample, output.prev_sample_mean
result_sum = torch.sum(torch.abs(sample))
result_mean = torch.mean(torch.abs(sample))
assert np.isclose(result_sum.item(), 14372758528.0)
assert np.isclose(result_mean.item(), 18714530.0)
def test_step_shape(self):
kwargs = dict(self.forward_default_kwargs)
num_inference_steps = kwargs.pop("num_inference_steps", None)
for scheduler_class in self.scheduler_classes:
scheduler_config = self.get_scheduler_config()
scheduler = scheduler_class(**scheduler_config)
sample = self.dummy_sample
residual = 0.1 * sample
if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"):
scheduler.set_timesteps(num_inference_steps)
elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"):
kwargs["num_inference_steps"] = num_inference_steps
output_0 = scheduler.step_pred(residual, 0, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
output_1 = scheduler.step_pred(residual, 1, sample, generator=torch.manual_seed(0), **kwargs).prev_sample
self.assertEqual(output_0.shape, sample.shape)
self.assertEqual(output_0.shape, output_1.shape)