89 lines
3.4 KiB
Python
89 lines
3.4 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import torch
|
|
|
|
from diffusers import DDIMScheduler, DDPMScheduler, UNet2DModel
|
|
from diffusers.testing_utils import slow
|
|
from diffusers.training_utils import set_seed
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class TrainingTests(unittest.TestCase):
|
|
def get_model_optimizer(self, resolution=32):
|
|
set_seed(0)
|
|
model = UNet2DModel(sample_size=resolution, in_channels=3, out_channels=3)
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=0.0001)
|
|
return model, optimizer
|
|
|
|
@slow
|
|
def test_training_step_equality(self):
|
|
device = "cpu" # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable
|
|
ddpm_scheduler = DDPMScheduler(
|
|
num_train_timesteps=1000,
|
|
beta_start=0.0001,
|
|
beta_end=0.02,
|
|
beta_schedule="linear",
|
|
clip_sample=True,
|
|
tensor_format="pt",
|
|
)
|
|
ddim_scheduler = DDIMScheduler(
|
|
num_train_timesteps=1000,
|
|
beta_start=0.0001,
|
|
beta_end=0.02,
|
|
beta_schedule="linear",
|
|
clip_sample=True,
|
|
tensor_format="pt",
|
|
)
|
|
|
|
assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps
|
|
|
|
# shared batches for DDPM and DDIM
|
|
set_seed(0)
|
|
clean_images = [torch.randn((4, 3, 32, 32)).clip(-1, 1).to(device) for _ in range(4)]
|
|
noise = [torch.randn((4, 3, 32, 32)).to(device) for _ in range(4)]
|
|
timesteps = [torch.randint(0, 1000, (4,)).long().to(device) for _ in range(4)]
|
|
|
|
# train with a DDPM scheduler
|
|
model, optimizer = self.get_model_optimizer(resolution=32)
|
|
model.train().to(device)
|
|
for i in range(4):
|
|
optimizer.zero_grad()
|
|
ddpm_noisy_images = ddpm_scheduler.add_noise(clean_images[i], noise[i], timesteps[i])
|
|
ddpm_noise_pred = model(ddpm_noisy_images, timesteps[i]).sample
|
|
loss = torch.nn.functional.mse_loss(ddpm_noise_pred, noise[i])
|
|
loss.backward()
|
|
optimizer.step()
|
|
del model, optimizer
|
|
|
|
# recreate the model and optimizer, and retry with DDIM
|
|
model, optimizer = self.get_model_optimizer(resolution=32)
|
|
model.train().to(device)
|
|
for i in range(4):
|
|
optimizer.zero_grad()
|
|
ddim_noisy_images = ddim_scheduler.add_noise(clean_images[i], noise[i], timesteps[i])
|
|
ddim_noise_pred = model(ddim_noisy_images, timesteps[i]).sample
|
|
loss = torch.nn.functional.mse_loss(ddim_noise_pred, noise[i])
|
|
loss.backward()
|
|
optimizer.step()
|
|
del model, optimizer
|
|
|
|
self.assertTrue(torch.allclose(ddpm_noisy_images, ddim_noisy_images, atol=1e-5))
|
|
self.assertTrue(torch.allclose(ddpm_noise_pred, ddim_noise_pred, atol=1e-5))
|