115 lines
4.0 KiB
Python
115 lines
4.0 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import DDIMPipeline, DDIMScheduler, UNet2DModel
|
|
from diffusers.utils.testing_utils import require_torch, slow, torch_device
|
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class DDIMPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
@property
|
|
def dummy_uncond_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
|
|
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
|
|
)
|
|
return model
|
|
|
|
def test_inference(self):
|
|
unet = self.dummy_uncond_unet
|
|
scheduler = DDIMScheduler()
|
|
|
|
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
|
|
# Warmup pass when using mps (see #372)
|
|
if torch_device == "mps":
|
|
_ = ddpm(num_inference_steps=1)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddpm(generator=generator, num_inference_steps=2, output_type="numpy").images
|
|
|
|
generator = torch.manual_seed(0)
|
|
image_from_tuple = ddpm(generator=generator, num_inference_steps=2, output_type="numpy", return_dict=False)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array(
|
|
[1.000e00, 5.717e-01, 4.717e-01, 1.000e00, 0.000e00, 1.000e00, 3.000e-04, 0.000e00, 9.000e-04]
|
|
)
|
|
tolerance = 1e-2 if torch_device != "mps" else 3e-2
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < tolerance
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < tolerance
|
|
|
|
|
|
@slow
|
|
@require_torch
|
|
class DDIMPipelineIntegrationTests(unittest.TestCase):
|
|
def test_inference_ema_bedroom(self):
|
|
model_id = "google/ddpm-ema-bedroom-256"
|
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
scheduler = DDIMScheduler.from_config(model_id)
|
|
|
|
ddpm = DDIMPipeline(unet=unet, scheduler=scheduler)
|
|
ddpm.to(torch_device)
|
|
ddpm.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddpm(generator=generator, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 256, 256, 3)
|
|
expected_slice = np.array([0.00605, 0.0201, 0.0344, 0.00235, 0.00185, 0.00025, 0.00215, 0.0, 0.00685])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_inference_cifar10(self):
|
|
model_id = "google/ddpm-cifar10-32"
|
|
|
|
unet = UNet2DModel.from_pretrained(model_id)
|
|
scheduler = DDIMScheduler()
|
|
|
|
ddim = DDIMPipeline(unet=unet, scheduler=scheduler)
|
|
ddim.to(torch_device)
|
|
ddim.set_progress_bar_config(disable=None)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = ddim(generator=generator, eta=0.0, output_type="numpy").images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([0.17235, 0.16175, 0.16005, 0.16255, 0.1497, 0.1513, 0.15045, 0.1442, 0.1453])
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|