101 lines
3.6 KiB
Python
101 lines
3.6 KiB
Python
import json
|
|
import os
|
|
|
|
import torch
|
|
|
|
from diffusers import UNet1DModel
|
|
|
|
|
|
os.makedirs("hub/hopper-medium-v2/unet/hor32", exist_ok=True)
|
|
os.makedirs("hub/hopper-medium-v2/unet/hor128", exist_ok=True)
|
|
|
|
os.makedirs("hub/hopper-medium-v2/value_function", exist_ok=True)
|
|
|
|
|
|
def unet(hor):
|
|
if hor == 128:
|
|
down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
|
|
block_out_channels = (32, 128, 256)
|
|
up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D")
|
|
|
|
elif hor == 32:
|
|
down_block_types = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D")
|
|
block_out_channels = (32, 64, 128, 256)
|
|
up_block_types = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D")
|
|
model = torch.load(f"/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch")
|
|
state_dict = model.state_dict()
|
|
config = dict(
|
|
down_block_types=down_block_types,
|
|
block_out_channels=block_out_channels,
|
|
up_block_types=up_block_types,
|
|
layers_per_block=1,
|
|
use_timestep_embedding=True,
|
|
out_block_type="OutConv1DBlock",
|
|
norm_num_groups=8,
|
|
downsample_each_block=False,
|
|
in_channels=14,
|
|
out_channels=14,
|
|
extra_in_channels=0,
|
|
time_embedding_type="positional",
|
|
flip_sin_to_cos=False,
|
|
freq_shift=1,
|
|
sample_size=65536,
|
|
mid_block_type="MidResTemporalBlock1D",
|
|
act_fn="mish",
|
|
)
|
|
hf_value_function = UNet1DModel(**config)
|
|
print(f"length of state dict: {len(state_dict.keys())}")
|
|
print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}")
|
|
mapping = dict((k, hfk) for k, hfk in zip(model.state_dict().keys(), hf_value_function.state_dict().keys()))
|
|
for k, v in mapping.items():
|
|
state_dict[v] = state_dict.pop(k)
|
|
hf_value_function.load_state_dict(state_dict)
|
|
|
|
torch.save(hf_value_function.state_dict(), f"hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin")
|
|
with open(f"hub/hopper-medium-v2/unet/hor{hor}/config.json", "w") as f:
|
|
json.dump(config, f)
|
|
|
|
|
|
def value_function():
|
|
config = dict(
|
|
in_channels=14,
|
|
down_block_types=("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"),
|
|
up_block_types=(),
|
|
out_block_type="ValueFunction",
|
|
mid_block_type="ValueFunctionMidBlock1D",
|
|
block_out_channels=(32, 64, 128, 256),
|
|
layers_per_block=1,
|
|
downsample_each_block=True,
|
|
sample_size=65536,
|
|
out_channels=14,
|
|
extra_in_channels=0,
|
|
time_embedding_type="positional",
|
|
use_timestep_embedding=True,
|
|
flip_sin_to_cos=False,
|
|
freq_shift=1,
|
|
norm_num_groups=8,
|
|
act_fn="mish",
|
|
)
|
|
|
|
model = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch")
|
|
state_dict = model
|
|
hf_value_function = UNet1DModel(**config)
|
|
print(f"length of state dict: {len(state_dict.keys())}")
|
|
print(f"length of value function dict: {len(hf_value_function.state_dict().keys())}")
|
|
|
|
mapping = dict((k, hfk) for k, hfk in zip(state_dict.keys(), hf_value_function.state_dict().keys()))
|
|
for k, v in mapping.items():
|
|
state_dict[v] = state_dict.pop(k)
|
|
|
|
hf_value_function.load_state_dict(state_dict)
|
|
|
|
torch.save(hf_value_function.state_dict(), "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin")
|
|
with open("hub/hopper-medium-v2/value_function/config.json", "w") as f:
|
|
json.dump(config, f)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
unet(32)
|
|
# unet(128)
|
|
value_function()
|