630 lines
23 KiB
Python
630 lines
23 KiB
Python
import argparse
|
|
import logging
|
|
import math
|
|
import os
|
|
import random
|
|
from pathlib import Path
|
|
from typing import Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.utils.checkpoint
|
|
from torch.utils.data import Dataset
|
|
|
|
import jax
|
|
import jax.numpy as jnp
|
|
import optax
|
|
import transformers
|
|
from diffusers import (
|
|
FlaxAutoencoderKL,
|
|
FlaxDDPMScheduler,
|
|
FlaxPNDMScheduler,
|
|
FlaxStableDiffusionPipeline,
|
|
FlaxUNet2DConditionModel,
|
|
)
|
|
from diffusers.pipelines.stable_diffusion import FlaxStableDiffusionSafetyChecker
|
|
from diffusers.utils import PIL_INTERPOLATION
|
|
from flax import jax_utils
|
|
from flax.training import train_state
|
|
from flax.training.common_utils import shard
|
|
from huggingface_hub import HfFolder, Repository, whoami
|
|
from PIL import Image
|
|
from torchvision import transforms
|
|
from tqdm.auto import tqdm
|
|
from transformers import CLIPFeatureExtractor, CLIPTokenizer, FlaxCLIPTextModel, set_seed
|
|
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
def parse_args():
|
|
parser = argparse.ArgumentParser(description="Simple example of a training script.")
|
|
parser.add_argument(
|
|
"--pretrained_model_name_or_path",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="Path to pretrained model or model identifier from huggingface.co/models.",
|
|
)
|
|
parser.add_argument(
|
|
"--tokenizer_name",
|
|
type=str,
|
|
default=None,
|
|
help="Pretrained tokenizer name or path if not the same as model_name",
|
|
)
|
|
parser.add_argument(
|
|
"--train_data_dir", type=str, default=None, required=True, help="A folder containing the training data."
|
|
)
|
|
parser.add_argument(
|
|
"--placeholder_token",
|
|
type=str,
|
|
default=None,
|
|
required=True,
|
|
help="A token to use as a placeholder for the concept.",
|
|
)
|
|
parser.add_argument(
|
|
"--initializer_token", type=str, default=None, required=True, help="A token to use as initializer word."
|
|
)
|
|
parser.add_argument("--learnable_property", type=str, default="object", help="Choose between 'object' and 'style'")
|
|
parser.add_argument("--repeats", type=int, default=100, help="How many times to repeat the training data.")
|
|
parser.add_argument(
|
|
"--output_dir",
|
|
type=str,
|
|
default="text-inversion-model",
|
|
help="The output directory where the model predictions and checkpoints will be written.",
|
|
)
|
|
parser.add_argument("--seed", type=int, default=42, help="A seed for reproducible training.")
|
|
parser.add_argument(
|
|
"--resolution",
|
|
type=int,
|
|
default=512,
|
|
help=(
|
|
"The resolution for input images, all the images in the train/validation dataset will be resized to this"
|
|
" resolution"
|
|
),
|
|
)
|
|
parser.add_argument(
|
|
"--center_crop", action="store_true", help="Whether to center crop images before resizing to resolution"
|
|
)
|
|
parser.add_argument(
|
|
"--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader."
|
|
)
|
|
parser.add_argument("--num_train_epochs", type=int, default=100)
|
|
parser.add_argument(
|
|
"--max_train_steps",
|
|
type=int,
|
|
default=5000,
|
|
help="Total number of training steps to perform. If provided, overrides num_train_epochs.",
|
|
)
|
|
parser.add_argument(
|
|
"--learning_rate",
|
|
type=float,
|
|
default=1e-4,
|
|
help="Initial learning rate (after the potential warmup period) to use.",
|
|
)
|
|
parser.add_argument(
|
|
"--scale_lr",
|
|
action="store_true",
|
|
default=True,
|
|
help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.",
|
|
)
|
|
parser.add_argument(
|
|
"--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler."
|
|
)
|
|
parser.add_argument(
|
|
"--lr_scheduler",
|
|
type=str,
|
|
default="constant",
|
|
help=(
|
|
'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",'
|
|
' "constant", "constant_with_warmup"]'
|
|
),
|
|
)
|
|
parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.")
|
|
parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.")
|
|
parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer")
|
|
parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.")
|
|
parser.add_argument(
|
|
"--use_auth_token",
|
|
action="store_true",
|
|
help=(
|
|
"Will use the token generated when running `huggingface-cli login` (necessary to use this script with"
|
|
" private models)."
|
|
),
|
|
)
|
|
parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.")
|
|
parser.add_argument(
|
|
"--hub_model_id",
|
|
type=str,
|
|
default=None,
|
|
help="The name of the repository to keep in sync with the local `output_dir`.",
|
|
)
|
|
parser.add_argument(
|
|
"--logging_dir",
|
|
type=str,
|
|
default="logs",
|
|
help=(
|
|
"[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to"
|
|
" *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***."
|
|
),
|
|
)
|
|
parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank")
|
|
|
|
args = parser.parse_args()
|
|
env_local_rank = int(os.environ.get("LOCAL_RANK", -1))
|
|
if env_local_rank != -1 and env_local_rank != args.local_rank:
|
|
args.local_rank = env_local_rank
|
|
|
|
if args.train_data_dir is None:
|
|
raise ValueError("You must specify a train data directory.")
|
|
|
|
return args
|
|
|
|
|
|
imagenet_templates_small = [
|
|
"a photo of a {}",
|
|
"a rendering of a {}",
|
|
"a cropped photo of the {}",
|
|
"the photo of a {}",
|
|
"a photo of a clean {}",
|
|
"a photo of a dirty {}",
|
|
"a dark photo of the {}",
|
|
"a photo of my {}",
|
|
"a photo of the cool {}",
|
|
"a close-up photo of a {}",
|
|
"a bright photo of the {}",
|
|
"a cropped photo of a {}",
|
|
"a photo of the {}",
|
|
"a good photo of the {}",
|
|
"a photo of one {}",
|
|
"a close-up photo of the {}",
|
|
"a rendition of the {}",
|
|
"a photo of the clean {}",
|
|
"a rendition of a {}",
|
|
"a photo of a nice {}",
|
|
"a good photo of a {}",
|
|
"a photo of the nice {}",
|
|
"a photo of the small {}",
|
|
"a photo of the weird {}",
|
|
"a photo of the large {}",
|
|
"a photo of a cool {}",
|
|
"a photo of a small {}",
|
|
]
|
|
|
|
imagenet_style_templates_small = [
|
|
"a painting in the style of {}",
|
|
"a rendering in the style of {}",
|
|
"a cropped painting in the style of {}",
|
|
"the painting in the style of {}",
|
|
"a clean painting in the style of {}",
|
|
"a dirty painting in the style of {}",
|
|
"a dark painting in the style of {}",
|
|
"a picture in the style of {}",
|
|
"a cool painting in the style of {}",
|
|
"a close-up painting in the style of {}",
|
|
"a bright painting in the style of {}",
|
|
"a cropped painting in the style of {}",
|
|
"a good painting in the style of {}",
|
|
"a close-up painting in the style of {}",
|
|
"a rendition in the style of {}",
|
|
"a nice painting in the style of {}",
|
|
"a small painting in the style of {}",
|
|
"a weird painting in the style of {}",
|
|
"a large painting in the style of {}",
|
|
]
|
|
|
|
|
|
class TextualInversionDataset(Dataset):
|
|
def __init__(
|
|
self,
|
|
data_root,
|
|
tokenizer,
|
|
learnable_property="object", # [object, style]
|
|
size=512,
|
|
repeats=100,
|
|
interpolation="bicubic",
|
|
flip_p=0.5,
|
|
set="train",
|
|
placeholder_token="*",
|
|
center_crop=False,
|
|
):
|
|
self.data_root = data_root
|
|
self.tokenizer = tokenizer
|
|
self.learnable_property = learnable_property
|
|
self.size = size
|
|
self.placeholder_token = placeholder_token
|
|
self.center_crop = center_crop
|
|
self.flip_p = flip_p
|
|
|
|
self.image_paths = [os.path.join(self.data_root, file_path) for file_path in os.listdir(self.data_root)]
|
|
|
|
self.num_images = len(self.image_paths)
|
|
self._length = self.num_images
|
|
|
|
if set == "train":
|
|
self._length = self.num_images * repeats
|
|
|
|
self.interpolation = {
|
|
"linear": PIL_INTERPOLATION["linear"],
|
|
"bilinear": PIL_INTERPOLATION["bilinear"],
|
|
"bicubic": PIL_INTERPOLATION["bicubic"],
|
|
"lanczos": PIL_INTERPOLATION["lanczos"],
|
|
}[interpolation]
|
|
|
|
self.templates = imagenet_style_templates_small if learnable_property == "style" else imagenet_templates_small
|
|
self.flip_transform = transforms.RandomHorizontalFlip(p=self.flip_p)
|
|
|
|
def __len__(self):
|
|
return self._length
|
|
|
|
def __getitem__(self, i):
|
|
example = {}
|
|
image = Image.open(self.image_paths[i % self.num_images])
|
|
|
|
if not image.mode == "RGB":
|
|
image = image.convert("RGB")
|
|
|
|
placeholder_string = self.placeholder_token
|
|
text = random.choice(self.templates).format(placeholder_string)
|
|
|
|
example["input_ids"] = self.tokenizer(
|
|
text,
|
|
padding="max_length",
|
|
truncation=True,
|
|
max_length=self.tokenizer.model_max_length,
|
|
return_tensors="pt",
|
|
).input_ids[0]
|
|
|
|
# default to score-sde preprocessing
|
|
img = np.array(image).astype(np.uint8)
|
|
|
|
if self.center_crop:
|
|
crop = min(img.shape[0], img.shape[1])
|
|
h, w, = (
|
|
img.shape[0],
|
|
img.shape[1],
|
|
)
|
|
img = img[(h - crop) // 2 : (h + crop) // 2, (w - crop) // 2 : (w + crop) // 2]
|
|
|
|
image = Image.fromarray(img)
|
|
image = image.resize((self.size, self.size), resample=self.interpolation)
|
|
|
|
image = self.flip_transform(image)
|
|
image = np.array(image).astype(np.uint8)
|
|
image = (image / 127.5 - 1.0).astype(np.float32)
|
|
|
|
example["pixel_values"] = torch.from_numpy(image).permute(2, 0, 1)
|
|
return example
|
|
|
|
|
|
def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None):
|
|
if token is None:
|
|
token = HfFolder.get_token()
|
|
if organization is None:
|
|
username = whoami(token)["name"]
|
|
return f"{username}/{model_id}"
|
|
else:
|
|
return f"{organization}/{model_id}"
|
|
|
|
|
|
def resize_token_embeddings(model, new_num_tokens, initializer_token_id, placeholder_token_id, rng):
|
|
if model.config.vocab_size == new_num_tokens or new_num_tokens is None:
|
|
return
|
|
model.config.vocab_size = new_num_tokens
|
|
|
|
params = model.params
|
|
old_embeddings = params["text_model"]["embeddings"]["token_embedding"]["embedding"]
|
|
old_num_tokens, emb_dim = old_embeddings.shape
|
|
|
|
initializer = jax.nn.initializers.normal()
|
|
|
|
new_embeddings = initializer(rng, (new_num_tokens, emb_dim))
|
|
new_embeddings = new_embeddings.at[:old_num_tokens].set(old_embeddings)
|
|
new_embeddings = new_embeddings.at[placeholder_token_id].set(new_embeddings[initializer_token_id])
|
|
params["text_model"]["embeddings"]["token_embedding"]["embedding"] = new_embeddings
|
|
|
|
model.params = params
|
|
return model
|
|
|
|
|
|
def get_params_to_save(params):
|
|
return jax.device_get(jax.tree_util.tree_map(lambda x: x[0], params))
|
|
|
|
|
|
def main():
|
|
args = parse_args()
|
|
|
|
if args.seed is not None:
|
|
set_seed(args.seed)
|
|
|
|
if jax.process_index() == 0:
|
|
if args.push_to_hub:
|
|
if args.hub_model_id is None:
|
|
repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token)
|
|
else:
|
|
repo_name = args.hub_model_id
|
|
repo = Repository(args.output_dir, clone_from=repo_name)
|
|
|
|
with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore:
|
|
if "step_*" not in gitignore:
|
|
gitignore.write("step_*\n")
|
|
if "epoch_*" not in gitignore:
|
|
gitignore.write("epoch_*\n")
|
|
elif args.output_dir is not None:
|
|
os.makedirs(args.output_dir, exist_ok=True)
|
|
|
|
# Make one log on every process with the configuration for debugging.
|
|
logging.basicConfig(
|
|
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
|
|
datefmt="%m/%d/%Y %H:%M:%S",
|
|
level=logging.INFO,
|
|
)
|
|
# Setup logging, we only want one process per machine to log things on the screen.
|
|
logger.setLevel(logging.INFO if jax.process_index() == 0 else logging.ERROR)
|
|
if jax.process_index() == 0:
|
|
transformers.utils.logging.set_verbosity_info()
|
|
else:
|
|
transformers.utils.logging.set_verbosity_error()
|
|
|
|
# Load the tokenizer and add the placeholder token as a additional special token
|
|
if args.tokenizer_name:
|
|
tokenizer = CLIPTokenizer.from_pretrained(args.tokenizer_name)
|
|
elif args.pretrained_model_name_or_path:
|
|
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="tokenizer")
|
|
|
|
# Add the placeholder token in tokenizer
|
|
num_added_tokens = tokenizer.add_tokens(args.placeholder_token)
|
|
if num_added_tokens == 0:
|
|
raise ValueError(
|
|
f"The tokenizer already contains the token {args.placeholder_token}. Please pass a different"
|
|
" `placeholder_token` that is not already in the tokenizer."
|
|
)
|
|
|
|
# Convert the initializer_token, placeholder_token to ids
|
|
token_ids = tokenizer.encode(args.initializer_token, add_special_tokens=False)
|
|
# Check if initializer_token is a single token or a sequence of tokens
|
|
if len(token_ids) > 1:
|
|
raise ValueError("The initializer token must be a single token.")
|
|
|
|
initializer_token_id = token_ids[0]
|
|
placeholder_token_id = tokenizer.convert_tokens_to_ids(args.placeholder_token)
|
|
|
|
# Load models and create wrapper for stable diffusion
|
|
text_encoder = FlaxCLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="text_encoder")
|
|
vae, vae_params = FlaxAutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae")
|
|
unet, unet_params = FlaxUNet2DConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="unet")
|
|
|
|
# Create sampling rng
|
|
rng = jax.random.PRNGKey(args.seed)
|
|
rng, _ = jax.random.split(rng)
|
|
# Resize the token embeddings as we are adding new special tokens to the tokenizer
|
|
text_encoder = resize_token_embeddings(
|
|
text_encoder, len(tokenizer), initializer_token_id, placeholder_token_id, rng
|
|
)
|
|
original_token_embeds = text_encoder.params["text_model"]["embeddings"]["token_embedding"]["embedding"]
|
|
|
|
train_dataset = TextualInversionDataset(
|
|
data_root=args.train_data_dir,
|
|
tokenizer=tokenizer,
|
|
size=args.resolution,
|
|
placeholder_token=args.placeholder_token,
|
|
repeats=args.repeats,
|
|
learnable_property=args.learnable_property,
|
|
center_crop=args.center_crop,
|
|
set="train",
|
|
)
|
|
|
|
def collate_fn(examples):
|
|
pixel_values = torch.stack([example["pixel_values"] for example in examples])
|
|
input_ids = torch.stack([example["input_ids"] for example in examples])
|
|
|
|
batch = {"pixel_values": pixel_values, "input_ids": input_ids}
|
|
batch = {k: v.numpy() for k, v in batch.items()}
|
|
|
|
return batch
|
|
|
|
total_train_batch_size = args.train_batch_size * jax.local_device_count()
|
|
train_dataloader = torch.utils.data.DataLoader(
|
|
train_dataset, batch_size=total_train_batch_size, shuffle=True, drop_last=True, collate_fn=collate_fn
|
|
)
|
|
|
|
# Optimization
|
|
if args.scale_lr:
|
|
args.learning_rate = args.learning_rate * total_train_batch_size
|
|
|
|
constant_scheduler = optax.constant_schedule(args.learning_rate)
|
|
|
|
optimizer = optax.adamw(
|
|
learning_rate=constant_scheduler,
|
|
b1=args.adam_beta1,
|
|
b2=args.adam_beta2,
|
|
eps=args.adam_epsilon,
|
|
weight_decay=args.adam_weight_decay,
|
|
)
|
|
|
|
def create_mask(params, label_fn):
|
|
def _map(params, mask, label_fn):
|
|
for k in params:
|
|
if label_fn(k):
|
|
mask[k] = "token_embedding"
|
|
else:
|
|
if isinstance(params[k], dict):
|
|
mask[k] = {}
|
|
_map(params[k], mask[k], label_fn)
|
|
else:
|
|
mask[k] = "zero"
|
|
|
|
mask = {}
|
|
_map(params, mask, label_fn)
|
|
return mask
|
|
|
|
def zero_grads():
|
|
# from https://github.com/deepmind/optax/issues/159#issuecomment-896459491
|
|
def init_fn(_):
|
|
return ()
|
|
|
|
def update_fn(updates, state, params=None):
|
|
return jax.tree_util.tree_map(jnp.zeros_like, updates), ()
|
|
|
|
return optax.GradientTransformation(init_fn, update_fn)
|
|
|
|
# Zero out gradients of layers other than the token embedding layer
|
|
tx = optax.multi_transform(
|
|
{"token_embedding": optimizer, "zero": zero_grads()},
|
|
create_mask(text_encoder.params, lambda s: s == "token_embedding"),
|
|
)
|
|
|
|
state = train_state.TrainState.create(apply_fn=text_encoder.__call__, params=text_encoder.params, tx=tx)
|
|
|
|
noise_scheduler = FlaxDDPMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", num_train_timesteps=1000
|
|
)
|
|
|
|
# Initialize our training
|
|
train_rngs = jax.random.split(rng, jax.local_device_count())
|
|
|
|
# Define gradient train step fn
|
|
def train_step(state, vae_params, unet_params, batch, train_rng):
|
|
dropout_rng, sample_rng, new_train_rng = jax.random.split(train_rng, 3)
|
|
|
|
def compute_loss(params):
|
|
vae_outputs = vae.apply(
|
|
{"params": vae_params}, batch["pixel_values"], deterministic=True, method=vae.encode
|
|
)
|
|
latents = vae_outputs.latent_dist.sample(sample_rng)
|
|
# (NHWC) -> (NCHW)
|
|
latents = jnp.transpose(latents, (0, 3, 1, 2))
|
|
latents = latents * 0.18215
|
|
|
|
noise_rng, timestep_rng = jax.random.split(sample_rng)
|
|
noise = jax.random.normal(noise_rng, latents.shape)
|
|
bsz = latents.shape[0]
|
|
timesteps = jax.random.randint(
|
|
timestep_rng,
|
|
(bsz,),
|
|
0,
|
|
noise_scheduler.config.num_train_timesteps,
|
|
)
|
|
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
|
|
encoder_hidden_states = state.apply_fn(
|
|
batch["input_ids"], params=params, dropout_rng=dropout_rng, train=True
|
|
)[0]
|
|
unet_outputs = unet.apply(
|
|
{"params": unet_params}, noisy_latents, timesteps, encoder_hidden_states, train=False
|
|
)
|
|
noise_pred = unet_outputs.sample
|
|
loss = (noise - noise_pred) ** 2
|
|
loss = loss.mean()
|
|
|
|
return loss
|
|
|
|
grad_fn = jax.value_and_grad(compute_loss)
|
|
loss, grad = grad_fn(state.params)
|
|
grad = jax.lax.pmean(grad, "batch")
|
|
new_state = state.apply_gradients(grads=grad)
|
|
|
|
# Keep the token embeddings fixed except the newly added embeddings for the concept,
|
|
# as we only want to optimize the concept embeddings
|
|
token_embeds = original_token_embeds.at[placeholder_token_id].set(
|
|
new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"][placeholder_token_id]
|
|
)
|
|
new_state.params["text_model"]["embeddings"]["token_embedding"]["embedding"] = token_embeds
|
|
|
|
metrics = {"loss": loss}
|
|
metrics = jax.lax.pmean(metrics, axis_name="batch")
|
|
return new_state, metrics, new_train_rng
|
|
|
|
# Create parallel version of the train and eval step
|
|
p_train_step = jax.pmap(train_step, "batch", donate_argnums=(0,))
|
|
|
|
# Replicate the train state on each device
|
|
state = jax_utils.replicate(state)
|
|
vae_params = jax_utils.replicate(vae_params)
|
|
unet_params = jax_utils.replicate(unet_params)
|
|
|
|
# Train!
|
|
num_update_steps_per_epoch = math.ceil(len(train_dataloader))
|
|
|
|
# Scheduler and math around the number of training steps.
|
|
if args.max_train_steps is None:
|
|
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
|
|
|
|
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
|
|
|
|
logger.info("***** Running training *****")
|
|
logger.info(f" Num examples = {len(train_dataset)}")
|
|
logger.info(f" Num Epochs = {args.num_train_epochs}")
|
|
logger.info(f" Instantaneous batch size per device = {args.train_batch_size}")
|
|
logger.info(f" Total train batch size (w. parallel & distributed) = {total_train_batch_size}")
|
|
logger.info(f" Total optimization steps = {args.max_train_steps}")
|
|
|
|
global_step = 0
|
|
|
|
epochs = tqdm(range(args.num_train_epochs), desc=f"Epoch ... (1/{args.num_train_epochs})", position=0)
|
|
for epoch in epochs:
|
|
# ======================== Training ================================
|
|
|
|
train_metrics = []
|
|
|
|
steps_per_epoch = len(train_dataset) // total_train_batch_size
|
|
train_step_progress_bar = tqdm(total=steps_per_epoch, desc="Training...", position=1, leave=False)
|
|
# train
|
|
for batch in train_dataloader:
|
|
batch = shard(batch)
|
|
state, train_metric, train_rngs = p_train_step(state, vae_params, unet_params, batch, train_rngs)
|
|
train_metrics.append(train_metric)
|
|
|
|
train_step_progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
if global_step >= args.max_train_steps:
|
|
break
|
|
|
|
train_metric = jax_utils.unreplicate(train_metric)
|
|
|
|
train_step_progress_bar.close()
|
|
epochs.write(f"Epoch... ({epoch + 1}/{args.num_train_epochs} | Loss: {train_metric['loss']})")
|
|
|
|
# Create the pipeline using using the trained modules and save it.
|
|
if jax.process_index() == 0:
|
|
scheduler = FlaxPNDMScheduler(
|
|
beta_start=0.00085, beta_end=0.012, beta_schedule="scaled_linear", skip_prk_steps=True
|
|
)
|
|
safety_checker = FlaxStableDiffusionSafetyChecker.from_pretrained(
|
|
"CompVis/stable-diffusion-safety-checker", from_pt=True
|
|
)
|
|
pipeline = FlaxStableDiffusionPipeline(
|
|
text_encoder=text_encoder,
|
|
vae=vae,
|
|
unet=unet,
|
|
tokenizer=tokenizer,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=CLIPFeatureExtractor.from_pretrained("openai/clip-vit-base-patch32"),
|
|
)
|
|
|
|
pipeline.save_pretrained(
|
|
args.output_dir,
|
|
params={
|
|
"text_encoder": get_params_to_save(state.params),
|
|
"vae": get_params_to_save(vae_params),
|
|
"unet": get_params_to_save(unet_params),
|
|
"safety_checker": safety_checker.params,
|
|
},
|
|
)
|
|
|
|
# Also save the newly trained embeddings
|
|
learned_embeds = get_params_to_save(state.params)["text_model"]["embeddings"]["token_embedding"]["embedding"][
|
|
placeholder_token_id
|
|
]
|
|
learned_embeds_dict = {args.placeholder_token: learned_embeds}
|
|
jnp.save(os.path.join(args.output_dir, "learned_embeds.npy"), learned_embeds_dict)
|
|
|
|
if args.push_to_hub:
|
|
repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|