129 lines
4.9 KiB
Python
129 lines
4.9 KiB
Python
# coding=utf-8
|
|
# Copyright 2023, Haofan Wang, Qixun Wang, All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
""" Conversion script for the LoRA's safetensors checkpoints. """
|
|
|
|
import argparse
|
|
|
|
import torch
|
|
from safetensors.torch import load_file
|
|
|
|
from diffusers import StableDiffusionPipeline
|
|
|
|
|
|
def convert(base_model_path, checkpoint_path, LORA_PREFIX_UNET, LORA_PREFIX_TEXT_ENCODER, alpha):
|
|
# load base model
|
|
pipeline = StableDiffusionPipeline.from_pretrained(base_model_path, torch_dtype=torch.float32)
|
|
|
|
# load LoRA weight from .safetensors
|
|
state_dict = load_file(checkpoint_path)
|
|
|
|
visited = []
|
|
|
|
# directly update weight in diffusers model
|
|
for key in state_dict:
|
|
# it is suggested to print out the key, it usually will be something like below
|
|
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
|
|
|
|
# as we have set the alpha beforehand, so just skip
|
|
if ".alpha" in key or key in visited:
|
|
continue
|
|
|
|
if "text" in key:
|
|
layer_infos = key.split(".")[0].split(LORA_PREFIX_TEXT_ENCODER + "_")[-1].split("_")
|
|
curr_layer = pipeline.text_encoder
|
|
else:
|
|
layer_infos = key.split(".")[0].split(LORA_PREFIX_UNET + "_")[-1].split("_")
|
|
curr_layer = pipeline.unet
|
|
|
|
# find the target layer
|
|
temp_name = layer_infos.pop(0)
|
|
while len(layer_infos) > -1:
|
|
try:
|
|
curr_layer = curr_layer.__getattr__(temp_name)
|
|
if len(layer_infos) > 0:
|
|
temp_name = layer_infos.pop(0)
|
|
elif len(layer_infos) == 0:
|
|
break
|
|
except Exception:
|
|
if len(temp_name) > 0:
|
|
temp_name += "_" + layer_infos.pop(0)
|
|
else:
|
|
temp_name = layer_infos.pop(0)
|
|
|
|
pair_keys = []
|
|
if "lora_down" in key:
|
|
pair_keys.append(key.replace("lora_down", "lora_up"))
|
|
pair_keys.append(key)
|
|
else:
|
|
pair_keys.append(key)
|
|
pair_keys.append(key.replace("lora_up", "lora_down"))
|
|
|
|
# update weight
|
|
if len(state_dict[pair_keys[0]].shape) == 4:
|
|
weight_up = state_dict[pair_keys[0]].squeeze(3).squeeze(2).to(torch.float32)
|
|
weight_down = state_dict[pair_keys[1]].squeeze(3).squeeze(2).to(torch.float32)
|
|
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down).unsqueeze(2).unsqueeze(3)
|
|
else:
|
|
weight_up = state_dict[pair_keys[0]].to(torch.float32)
|
|
weight_down = state_dict[pair_keys[1]].to(torch.float32)
|
|
curr_layer.weight.data += alpha * torch.mm(weight_up, weight_down)
|
|
|
|
# update visited list
|
|
for item in pair_keys:
|
|
visited.append(item)
|
|
|
|
return pipeline
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format."
|
|
)
|
|
parser.add_argument(
|
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert."
|
|
)
|
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.")
|
|
parser.add_argument(
|
|
"--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors"
|
|
)
|
|
parser.add_argument(
|
|
"--lora_prefix_text_encoder",
|
|
default="lora_te",
|
|
type=str,
|
|
help="The prefix of text encoder weight in safetensors",
|
|
)
|
|
parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW")
|
|
parser.add_argument(
|
|
"--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not."
|
|
)
|
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)")
|
|
|
|
args = parser.parse_args()
|
|
|
|
base_model_path = args.base_model_path
|
|
checkpoint_path = args.checkpoint_path
|
|
dump_path = args.dump_path
|
|
lora_prefix_unet = args.lora_prefix_unet
|
|
lora_prefix_text_encoder = args.lora_prefix_text_encoder
|
|
alpha = args.alpha
|
|
|
|
pipe = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
|
|
|
|
pipe = pipe.to(args.device)
|
|
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
|