242 lines
8.6 KiB
Python
242 lines
8.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer
|
|
|
|
from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNet2DConditionModel
|
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
|
|
RobertaSeriesConfig,
|
|
RobertaSeriesModelWithTransformation,
|
|
)
|
|
from diffusers.utils import slow, torch_device
|
|
from diffusers.utils.testing_utils import require_torch_gpu
|
|
|
|
from ...test_pipelines_common import PipelineTesterMixin
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class AltDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase):
|
|
pipeline_class = AltDiffusionPipeline
|
|
|
|
def get_dummy_components(self):
|
|
torch.manual_seed(0)
|
|
unet = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
torch.manual_seed(0)
|
|
vae = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
|
|
# TODO: address the non-deterministic text encoder (fails for save-load tests)
|
|
# torch.manual_seed(0)
|
|
# text_encoder_config = RobertaSeriesConfig(
|
|
# hidden_size=32,
|
|
# project_dim=32,
|
|
# intermediate_size=37,
|
|
# layer_norm_eps=1e-05,
|
|
# num_attention_heads=4,
|
|
# num_hidden_layers=5,
|
|
# vocab_size=5002,
|
|
# )
|
|
# text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
|
|
|
|
torch.manual_seed(0)
|
|
text_encoder_config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
projection_dim=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=5002,
|
|
)
|
|
text_encoder = CLIPTextModel(text_encoder_config)
|
|
|
|
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
|
|
tokenizer.model_max_length = 77
|
|
|
|
components = {
|
|
"unet": unet,
|
|
"scheduler": scheduler,
|
|
"vae": vae,
|
|
"text_encoder": text_encoder,
|
|
"tokenizer": tokenizer,
|
|
"safety_checker": None,
|
|
"feature_extractor": None,
|
|
}
|
|
return components
|
|
|
|
def get_dummy_inputs(self, device, seed=0):
|
|
if str(device).startswith("mps"):
|
|
generator = torch.manual_seed(seed)
|
|
else:
|
|
generator = torch.Generator(device=device).manual_seed(seed)
|
|
inputs = {
|
|
"prompt": "A painting of a squirrel eating a burger",
|
|
"generator": generator,
|
|
"num_inference_steps": 2,
|
|
"guidance_scale": 6.0,
|
|
"output_type": "numpy",
|
|
}
|
|
return inputs
|
|
|
|
def test_alt_diffusion_ddim(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
torch.manual_seed(0)
|
|
text_encoder_config = RobertaSeriesConfig(
|
|
hidden_size=32,
|
|
project_dim=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
vocab_size=5002,
|
|
)
|
|
# TODO: remove after fixing the non-deterministic text encoder
|
|
text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
|
|
components["text_encoder"] = text_encoder
|
|
|
|
alt_pipe = AltDiffusionPipeline(**components)
|
|
alt_pipe = alt_pipe.to(device)
|
|
alt_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
inputs["prompt"] = "A photo of an astronaut"
|
|
output = alt_pipe(**inputs)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_alt_diffusion_pndm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
|
|
components = self.get_dummy_components()
|
|
components["scheduler"] = PNDMScheduler(skip_prk_steps=True)
|
|
torch.manual_seed(0)
|
|
text_encoder_config = RobertaSeriesConfig(
|
|
hidden_size=32,
|
|
project_dim=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
vocab_size=5002,
|
|
)
|
|
# TODO: remove after fixing the non-deterministic text encoder
|
|
text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config)
|
|
components["text_encoder"] = text_encoder
|
|
alt_pipe = AltDiffusionPipeline(**components)
|
|
alt_pipe = alt_pipe.to(device)
|
|
alt_pipe.set_progress_bar_config(disable=None)
|
|
|
|
inputs = self.get_dummy_inputs(device)
|
|
output = alt_pipe(**inputs)
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array(
|
|
[0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237]
|
|
)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class AltDiffusionPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_alt_diffusion(self):
|
|
# make sure here that pndm scheduler skips prk
|
|
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", safety_checker=None)
|
|
alt_pipe = alt_pipe.to(torch_device)
|
|
alt_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
output = alt_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=20, output_type="np")
|
|
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_alt_diffusion_fast_ddim(self):
|
|
scheduler = DDIMScheduler.from_pretrained("BAAI/AltDiffusion", subfolder="scheduler")
|
|
|
|
alt_pipe = AltDiffusionPipeline.from_pretrained("BAAI/AltDiffusion", scheduler=scheduler, safety_checker=None)
|
|
alt_pipe = alt_pipe.to(torch_device)
|
|
alt_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
|
|
output = alt_pipe([prompt], generator=generator, num_inference_steps=2, output_type="numpy")
|
|
image = output.images
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|