292 lines
9.5 KiB
Python
292 lines
9.5 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import XLMRobertaTokenizer
|
|
|
|
from diffusers import AltDiffusionImg2ImgPipeline, AutoencoderKL, PNDMScheduler, UNet2DConditionModel
|
|
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
|
|
RobertaSeriesConfig,
|
|
RobertaSeriesModelWithTransformation,
|
|
)
|
|
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
|
|
from diffusers.utils.testing_utils import require_torch_gpu
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@property
|
|
def dummy_image(self):
|
|
batch_size = 1
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
|
return image
|
|
|
|
@property
|
|
def dummy_cond_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vae(self):
|
|
torch.manual_seed(0)
|
|
model = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = RobertaSeriesConfig(
|
|
hidden_size=32,
|
|
project_dim=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=5006,
|
|
)
|
|
return RobertaSeriesModelWithTransformation(config)
|
|
|
|
@property
|
|
def dummy_extractor(self):
|
|
def extract(*args, **kwargs):
|
|
class Out:
|
|
def __init__(self):
|
|
self.pixel_values = torch.ones([0])
|
|
|
|
def to(self, device):
|
|
self.pixel_values.to(device)
|
|
return self
|
|
|
|
return Out()
|
|
|
|
return extract
|
|
|
|
def test_stable_diffusion_img2img_default_case(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
|
|
tokenizer.model_max_length = 77
|
|
|
|
init_image = self.dummy_image.to(device)
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
alt_pipe = AltDiffusionImg2ImgPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
alt_pipe = alt_pipe.to(device)
|
|
alt_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = alt_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
image=init_image,
|
|
)
|
|
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = alt_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
image=init_image,
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
expected_slice = np.array([0.4115, 0.3870, 0.4089, 0.4807, 0.4668, 0.4144, 0.4151, 0.4721, 0.4569])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
|
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
|
|
def test_stable_diffusion_img2img_fp16(self):
|
|
"""Test that stable diffusion img2img works with fp16"""
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
|
|
tokenizer.model_max_length = 77
|
|
|
|
init_image = self.dummy_image.to(torch_device)
|
|
|
|
# put models in fp16
|
|
unet = unet.half()
|
|
vae = vae.half()
|
|
bert = bert.half()
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
alt_pipe = AltDiffusionImg2ImgPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
alt_pipe = alt_pipe.to(torch_device)
|
|
alt_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.manual_seed(0)
|
|
image = alt_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
image=init_image,
|
|
).images
|
|
|
|
assert image.shape == (1, 32, 32, 3)
|
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
|
|
def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
)
|
|
# resize to resolution that is divisible by 8 but not 16 or 32
|
|
init_image = init_image.resize((760, 504))
|
|
|
|
model_id = "BAAI/AltDiffusion"
|
|
pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
|
|
model_id,
|
|
safety_checker=None,
|
|
)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
strength=0.75,
|
|
guidance_scale=7.5,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
|
|
image_slice = image[255:258, 383:386, -1]
|
|
|
|
assert image.shape == (504, 760, 3)
|
|
expected_slice = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
|
|
|
|
|
|
@slow
|
|
@require_torch_gpu
|
|
class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_stable_diffusion_img2img_pipeline_default(self):
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
|
|
"/img2img/sketch-mountains-input.jpg"
|
|
)
|
|
init_image = init_image.resize((768, 512))
|
|
expected_image = load_numpy(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy"
|
|
)
|
|
|
|
model_id = "BAAI/AltDiffusion"
|
|
pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
|
|
model_id,
|
|
safety_checker=None,
|
|
)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
pipe.enable_attention_slicing()
|
|
|
|
prompt = "A fantasy landscape, trending on artstation"
|
|
|
|
generator = torch.manual_seed(0)
|
|
output = pipe(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
strength=0.75,
|
|
guidance_scale=7.5,
|
|
generator=generator,
|
|
output_type="np",
|
|
)
|
|
image = output.images[0]
|
|
|
|
assert image.shape == (512, 768, 3)
|
|
# img2img is flaky across GPUs even in fp32, so using MAE here
|
|
assert np.abs(expected_image - image).max() < 1e-3
|