diffusers/tests/pipelines/altdiffusion/test_alt_diffusion_img2img.py

292 lines
9.5 KiB
Python

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import random
import unittest
import numpy as np
import torch
from transformers import XLMRobertaTokenizer
from diffusers import AltDiffusionImg2ImgPipeline, AutoencoderKL, PNDMScheduler, UNet2DConditionModel
from diffusers.pipelines.alt_diffusion.modeling_roberta_series import (
RobertaSeriesConfig,
RobertaSeriesModelWithTransformation,
)
from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device
from diffusers.utils.testing_utils import require_torch_gpu
torch.backends.cuda.matmul.allow_tf32 = False
class AltDiffusionImg2ImgPipelineFastTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
@property
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
@property
def dummy_cond_unet(self):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = RobertaSeriesConfig(
hidden_size=32,
project_dim=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=5006,
)
return RobertaSeriesModelWithTransformation(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
def test_stable_diffusion_img2img_default_case(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
init_image = self.dummy_image.to(device)
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe = alt_pipe.to(device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.Generator(device=device).manual_seed(0)
output = alt_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
)
image = output.images
generator = torch.Generator(device=device).manual_seed(0)
image_from_tuple = alt_pipe(
[prompt],
generator=generator,
guidance_scale=6.0,
num_inference_steps=2,
output_type="np",
image=init_image,
return_dict=False,
)[0]
image_slice = image[0, -3:, -3:, -1]
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
expected_slice = np.array([0.4115, 0.3870, 0.4089, 0.4807, 0.4668, 0.4144, 0.4151, 0.4721, 0.4569])
assert np.abs(image_slice.flatten() - expected_slice).max() < 5e-3
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 5e-3
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_img2img_fp16(self):
"""Test that stable diffusion img2img works with fp16"""
unet = self.dummy_cond_unet
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = XLMRobertaTokenizer.from_pretrained("hf-internal-testing/tiny-xlm-roberta")
tokenizer.model_max_length = 77
init_image = self.dummy_image.to(torch_device)
# put models in fp16
unet = unet.half()
vae = vae.half()
bert = bert.half()
# make sure here that pndm scheduler skips prk
alt_pipe = AltDiffusionImg2ImgPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
alt_pipe = alt_pipe.to(torch_device)
alt_pipe.set_progress_bar_config(disable=None)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image = alt_pipe(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
).images
assert image.shape == (1, 32, 32, 3)
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
def test_stable_diffusion_img2img_pipeline_multiple_of_8(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
# resize to resolution that is divisible by 8 but not 16 or 32
init_image = init_image.resize((760, 504))
model_id = "BAAI/AltDiffusion"
pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
image_slice = image[255:258, 383:386, -1]
assert image.shape == (504, 760, 3)
expected_slice = np.array([0.9358, 0.9397, 0.9599, 0.9901, 1.0000, 1.0000, 0.9882, 1.0000, 1.0000])
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-3
@slow
@require_torch_gpu
class AltDiffusionImg2ImgPipelineIntegrationTests(unittest.TestCase):
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def test_stable_diffusion_img2img_pipeline_default(self):
init_image = load_image(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
"/img2img/sketch-mountains-input.jpg"
)
init_image = init_image.resize((768, 512))
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/img2img/fantasy_landscape_alt.npy"
)
model_id = "BAAI/AltDiffusion"
pipe = AltDiffusionImg2ImgPipeline.from_pretrained(
model_id,
safety_checker=None,
)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
pipe.enable_attention_slicing()
prompt = "A fantasy landscape, trending on artstation"
generator = torch.manual_seed(0)
output = pipe(
prompt=prompt,
image=init_image,
strength=0.75,
guidance_scale=7.5,
generator=generator,
output_type="np",
)
image = output.images[0]
assert image.shape == (512, 768, 3)
# img2img is flaky across GPUs even in fp32, so using MAE here
assert np.abs(expected_image - image).max() < 1e-3