diffusers/conversion.py

126 lines
3.6 KiB
Python
Executable File

# coding=utf-8
# Copyright 2022 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import tempfile
import unittest
import numpy as np
import torch
from diffusers import (
AutoencoderKL,
DDIMPipeline,
DDIMScheduler,
DDPMPipeline,
DDPMScheduler,
GlidePipeline,
GlideSuperResUNetModel,
GlideTextToImageUNetModel,
LatentDiffusionPipeline,
LatentDiffusionUncondPipeline,
NCSNpp,
PNDMPipeline,
PNDMScheduler,
ScoreSdeVePipeline,
ScoreSdeVeScheduler,
ScoreSdeVpPipeline,
ScoreSdeVpScheduler,
UNetLDMModel,
UNetModel,
UNetUnconditionalModel,
VQModel,
)
from diffusers.configuration_utils import ConfigMixin
from diffusers.pipeline_utils import DiffusionPipeline
from diffusers.testing_utils import floats_tensor, slow, torch_device
from diffusers.training_utils import EMAModel
# 1. LDM
def test_output_pretrained_ldm_dummy():
model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy", ldm=True)
model.eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
time_step = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
output = model(noise, time_step)
print(model)
import ipdb; ipdb.set_trace()
def test_output_pretrained_ldm():
model = UNetUnconditionalModel.from_pretrained("fusing/latent-diffusion-celeba-256", subfolder="unet", ldm=True)
model.eval()
torch.manual_seed(0)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(0)
noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
time_step = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
output = model(noise, time_step)
print(model)
import ipdb; ipdb.set_trace()
# To see the how the final model should look like
# => this is the architecture in which the model should be saved in the new format
# -> verify new repo with the following tests (in `test_modeling_utils.py`)
# - test_ldm_uncond (in PipelineTesterMixin)
# - test_output_pretrained ( in UNetLDMModelTests)
#test_output_pretrained_ldm_dummy()
#test_output_pretrained_ldm()
# 2. DDPM
def get_model(model_id):
model = UNetUnconditionalModel.from_pretrained("fusing/unet-ldm-dummy", ldm=True)
noise = torch.randn(1, model.config.in_channels, model.config.image_size, model.config.image_size)
time_step = torch.tensor([10] * noise.shape[0])
with torch.no_grad():
output = model(noise, time_step)
print(model)
# Repos to convert and port to google (part of https://github.com/hojonathanho/diffusion)
# - fusing/ddpm_dummy
# - fusing/ddpm-cifar10
# - https://huggingface.co/fusing/ddpm-lsun-church-ema
# - https://huggingface.co/fusing/ddpm-lsun-bedroom-ema
# - https://huggingface.co/fusing/ddpm-celeba-hq
# tests to make sure to pass
# - test_ddim_cifar10, test_ddim_lsun, test_ddpm_cifar10, test_ddim_cifar10 (in PipelineTesterMixin)
# - test_output_pretrained ( in UNetModelTests)
# e.g.
get_model("fusing/ddpm-cifar10")