267 lines
9.6 KiB
Python
267 lines
9.6 KiB
Python
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import argparse
|
|
import os
|
|
import shutil
|
|
from pathlib import Path
|
|
|
|
import torch
|
|
from torch.onnx import export
|
|
|
|
import onnx
|
|
from diffusers import OnnxStableDiffusionPipeline, StableDiffusionPipeline
|
|
from diffusers.onnx_utils import OnnxRuntimeModel
|
|
from packaging import version
|
|
|
|
|
|
is_torch_less_than_1_11 = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11")
|
|
|
|
|
|
def onnx_export(
|
|
model,
|
|
model_args: tuple,
|
|
output_path: Path,
|
|
ordered_input_names,
|
|
output_names,
|
|
dynamic_axes,
|
|
opset,
|
|
use_external_data_format=False,
|
|
):
|
|
output_path.parent.mkdir(parents=True, exist_ok=True)
|
|
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
|
|
# so we check the torch version for backwards compatibility
|
|
if is_torch_less_than_1_11:
|
|
export(
|
|
model,
|
|
model_args,
|
|
f=output_path.as_posix(),
|
|
input_names=ordered_input_names,
|
|
output_names=output_names,
|
|
dynamic_axes=dynamic_axes,
|
|
do_constant_folding=True,
|
|
use_external_data_format=use_external_data_format,
|
|
enable_onnx_checker=True,
|
|
opset_version=opset,
|
|
)
|
|
else:
|
|
export(
|
|
model,
|
|
model_args,
|
|
f=output_path.as_posix(),
|
|
input_names=ordered_input_names,
|
|
output_names=output_names,
|
|
dynamic_axes=dynamic_axes,
|
|
do_constant_folding=True,
|
|
opset_version=opset,
|
|
)
|
|
|
|
|
|
@torch.no_grad()
|
|
def convert_models(model_path: str, output_path: str, opset: int, fp16: bool = False):
|
|
dtype = torch.float16 if fp16 else torch.float32
|
|
if fp16 and torch.cuda.is_available():
|
|
device = "cuda"
|
|
elif fp16 and not torch.cuda.is_available():
|
|
raise ValueError("`float16` model export is only supported on GPUs with CUDA")
|
|
else:
|
|
device = "cpu"
|
|
pipeline = StableDiffusionPipeline.from_pretrained(model_path, torch_dtype=dtype).to(device)
|
|
output_path = Path(output_path)
|
|
|
|
# TEXT ENCODER
|
|
num_tokens = pipeline.text_encoder.config.max_position_embeddings
|
|
text_hidden_size = pipeline.text_encoder.config.hidden_size
|
|
text_input = pipeline.tokenizer(
|
|
"A sample prompt",
|
|
padding="max_length",
|
|
max_length=pipeline.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
onnx_export(
|
|
pipeline.text_encoder,
|
|
# casting to torch.int32 until the CLIP fix is released: https://github.com/huggingface/transformers/pull/18515/files
|
|
model_args=(text_input.input_ids.to(device=device, dtype=torch.int32)),
|
|
output_path=output_path / "text_encoder" / "model.onnx",
|
|
ordered_input_names=["input_ids"],
|
|
output_names=["last_hidden_state", "pooler_output"],
|
|
dynamic_axes={
|
|
"input_ids": {0: "batch", 1: "sequence"},
|
|
},
|
|
opset=opset,
|
|
)
|
|
del pipeline.text_encoder
|
|
|
|
# UNET
|
|
unet_in_channels = pipeline.unet.config.in_channels
|
|
unet_sample_size = pipeline.unet.config.sample_size
|
|
unet_path = output_path / "unet" / "model.onnx"
|
|
onnx_export(
|
|
pipeline.unet,
|
|
model_args=(
|
|
torch.randn(2, unet_in_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
|
|
torch.randn(2).to(device=device, dtype=dtype),
|
|
torch.randn(2, num_tokens, text_hidden_size).to(device=device, dtype=dtype),
|
|
False,
|
|
),
|
|
output_path=unet_path,
|
|
ordered_input_names=["sample", "timestep", "encoder_hidden_states", "return_dict"],
|
|
output_names=["out_sample"], # has to be different from "sample" for correct tracing
|
|
dynamic_axes={
|
|
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
|
|
"timestep": {0: "batch"},
|
|
"encoder_hidden_states": {0: "batch", 1: "sequence"},
|
|
},
|
|
opset=opset,
|
|
use_external_data_format=True, # UNet is > 2GB, so the weights need to be split
|
|
)
|
|
unet_model_path = str(unet_path.absolute().as_posix())
|
|
unet_dir = os.path.dirname(unet_model_path)
|
|
unet = onnx.load(unet_model_path)
|
|
# clean up existing tensor files
|
|
shutil.rmtree(unet_dir)
|
|
os.mkdir(unet_dir)
|
|
# collate external tensor files into one
|
|
onnx.save_model(
|
|
unet,
|
|
unet_model_path,
|
|
save_as_external_data=True,
|
|
all_tensors_to_one_file=True,
|
|
location="weights.pb",
|
|
convert_attribute=False,
|
|
)
|
|
del pipeline.unet
|
|
|
|
# VAE ENCODER
|
|
vae_encoder = pipeline.vae
|
|
vae_in_channels = vae_encoder.config.in_channels
|
|
vae_sample_size = vae_encoder.config.sample_size
|
|
# need to get the raw tensor output (sample) from the encoder
|
|
vae_encoder.forward = lambda sample, return_dict: vae_encoder.encode(sample, return_dict)[0].sample()
|
|
onnx_export(
|
|
vae_encoder,
|
|
model_args=(
|
|
torch.randn(1, vae_in_channels, vae_sample_size, vae_sample_size).to(device=device, dtype=dtype),
|
|
False,
|
|
),
|
|
output_path=output_path / "vae_encoder" / "model.onnx",
|
|
ordered_input_names=["sample", "return_dict"],
|
|
output_names=["latent_sample"],
|
|
dynamic_axes={
|
|
"sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
|
|
},
|
|
opset=opset,
|
|
)
|
|
|
|
# VAE DECODER
|
|
vae_decoder = pipeline.vae
|
|
vae_latent_channels = vae_decoder.config.latent_channels
|
|
vae_out_channels = vae_decoder.config.out_channels
|
|
# forward only through the decoder part
|
|
vae_decoder.forward = vae_encoder.decode
|
|
onnx_export(
|
|
vae_decoder,
|
|
model_args=(
|
|
torch.randn(1, vae_latent_channels, unet_sample_size, unet_sample_size).to(device=device, dtype=dtype),
|
|
False,
|
|
),
|
|
output_path=output_path / "vae_decoder" / "model.onnx",
|
|
ordered_input_names=["latent_sample", "return_dict"],
|
|
output_names=["sample"],
|
|
dynamic_axes={
|
|
"latent_sample": {0: "batch", 1: "channels", 2: "height", 3: "width"},
|
|
},
|
|
opset=opset,
|
|
)
|
|
del pipeline.vae
|
|
|
|
# SAFETY CHECKER
|
|
if pipeline.safety_checker is not None:
|
|
safety_checker = pipeline.safety_checker
|
|
clip_num_channels = safety_checker.config.vision_config.num_channels
|
|
clip_image_size = safety_checker.config.vision_config.image_size
|
|
safety_checker.forward = safety_checker.forward_onnx
|
|
onnx_export(
|
|
pipeline.safety_checker,
|
|
model_args=(
|
|
torch.randn(
|
|
1,
|
|
clip_num_channels,
|
|
clip_image_size,
|
|
clip_image_size,
|
|
).to(device=device, dtype=dtype),
|
|
torch.randn(1, vae_sample_size, vae_sample_size, vae_out_channels).to(device=device, dtype=dtype),
|
|
),
|
|
output_path=output_path / "safety_checker" / "model.onnx",
|
|
ordered_input_names=["clip_input", "images"],
|
|
output_names=["out_images", "has_nsfw_concepts"],
|
|
dynamic_axes={
|
|
"clip_input": {0: "batch", 1: "channels", 2: "height", 3: "width"},
|
|
"images": {0: "batch", 1: "height", 2: "width", 3: "channels"},
|
|
},
|
|
opset=opset,
|
|
)
|
|
del pipeline.safety_checker
|
|
safety_checker = OnnxRuntimeModel.from_pretrained(output_path / "safety_checker")
|
|
feature_extractor = pipeline.feature_extractor
|
|
else:
|
|
safety_checker = None
|
|
feature_extractor = None
|
|
|
|
onnx_pipeline = OnnxStableDiffusionPipeline(
|
|
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_encoder"),
|
|
vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / "vae_decoder"),
|
|
text_encoder=OnnxRuntimeModel.from_pretrained(output_path / "text_encoder"),
|
|
tokenizer=pipeline.tokenizer,
|
|
unet=OnnxRuntimeModel.from_pretrained(output_path / "unet"),
|
|
scheduler=pipeline.scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
requires_safety_checker=safety_checker is not None,
|
|
)
|
|
|
|
onnx_pipeline.save_pretrained(output_path)
|
|
print("ONNX pipeline saved to", output_path)
|
|
|
|
del pipeline
|
|
del onnx_pipeline
|
|
_ = OnnxStableDiffusionPipeline.from_pretrained(output_path, provider="CPUExecutionProvider")
|
|
print("ONNX pipeline is loadable")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument(
|
|
"--model_path",
|
|
type=str,
|
|
required=True,
|
|
help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).",
|
|
)
|
|
|
|
parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.")
|
|
|
|
parser.add_argument(
|
|
"--opset",
|
|
default=14,
|
|
type=int,
|
|
help="The version of the ONNX operator set to use.",
|
|
)
|
|
parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode")
|
|
|
|
args = parser.parse_args()
|
|
|
|
convert_models(args.model_path, args.output_path, args.opset, args.fp16)
|