440 lines
15 KiB
Python
440 lines
15 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import random
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
|
|
|
|
from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNet2DConditionModel
|
|
from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline
|
|
from diffusers.utils import floats_tensor, nightly, torch_device
|
|
from diffusers.utils.testing_utils import require_torch_gpu
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class SafeDiffusionPipelineFastTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
@property
|
|
def dummy_image(self):
|
|
batch_size = 1
|
|
num_channels = 3
|
|
sizes = (32, 32)
|
|
|
|
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
|
|
return image
|
|
|
|
@property
|
|
def dummy_cond_unet(self):
|
|
torch.manual_seed(0)
|
|
model = UNet2DConditionModel(
|
|
block_out_channels=(32, 64),
|
|
layers_per_block=2,
|
|
sample_size=32,
|
|
in_channels=4,
|
|
out_channels=4,
|
|
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
|
|
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
|
|
cross_attention_dim=32,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_vae(self):
|
|
torch.manual_seed(0)
|
|
model = AutoencoderKL(
|
|
block_out_channels=[32, 64],
|
|
in_channels=3,
|
|
out_channels=3,
|
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
|
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
|
|
latent_channels=4,
|
|
)
|
|
return model
|
|
|
|
@property
|
|
def dummy_text_encoder(self):
|
|
torch.manual_seed(0)
|
|
config = CLIPTextConfig(
|
|
bos_token_id=0,
|
|
eos_token_id=2,
|
|
hidden_size=32,
|
|
intermediate_size=37,
|
|
layer_norm_eps=1e-05,
|
|
num_attention_heads=4,
|
|
num_hidden_layers=5,
|
|
pad_token_id=1,
|
|
vocab_size=1000,
|
|
)
|
|
return CLIPTextModel(config)
|
|
|
|
@property
|
|
def dummy_extractor(self):
|
|
def extract(*args, **kwargs):
|
|
class Out:
|
|
def __init__(self):
|
|
self.pixel_values = torch.ones([0])
|
|
|
|
def to(self, device):
|
|
self.pixel_values.to(device)
|
|
return self
|
|
|
|
return Out()
|
|
|
|
return extract
|
|
|
|
def test_safe_diffusion_ddim(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = DDIMScheduler(
|
|
beta_start=0.00085,
|
|
beta_end=0.012,
|
|
beta_schedule="scaled_linear",
|
|
clip_sample=False,
|
|
set_alpha_to_one=False,
|
|
)
|
|
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.5644, 0.6018, 0.4799, 0.5267, 0.5585, 0.4641, 0.516, 0.4964, 0.4792])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_pndm(self):
|
|
device = "cpu" # ensure determinism for the device-dependent torch.Generator
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
output = sd_pipe([prompt], generator=generator, guidance_scale=6.0, num_inference_steps=2, output_type="np")
|
|
|
|
image = output.images
|
|
|
|
generator = torch.Generator(device=device).manual_seed(0)
|
|
image_from_tuple = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=6.0,
|
|
num_inference_steps=2,
|
|
output_type="np",
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1]
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
expected_slice = np.array([0.5095, 0.5674, 0.4668, 0.5126, 0.5697, 0.4675, 0.5278, 0.4964, 0.4945])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_stable_diffusion_no_safety_checker(self):
|
|
pipe = StableDiffusionPipeline.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-lms-pipe", safety_checker=None
|
|
)
|
|
assert isinstance(pipe, StableDiffusionPipeline)
|
|
assert isinstance(pipe.scheduler, LMSDiscreteScheduler)
|
|
assert pipe.safety_checker is None
|
|
|
|
image = pipe("example prompt", num_inference_steps=2).images[0]
|
|
assert image is not None
|
|
|
|
# check that there's no error when saving a pipeline with one of the models being None
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pipe.save_pretrained(tmpdirname)
|
|
pipe = StableDiffusionPipeline.from_pretrained(tmpdirname)
|
|
|
|
# sanity check that the pipeline still works
|
|
assert pipe.safety_checker is None
|
|
image = pipe("example prompt", num_inference_steps=2).images[0]
|
|
assert image is not None
|
|
|
|
@unittest.skipIf(torch_device != "cuda", "This test requires a GPU")
|
|
def test_stable_diffusion_fp16(self):
|
|
"""Test that stable diffusion works with fp16"""
|
|
unet = self.dummy_cond_unet
|
|
scheduler = PNDMScheduler(skip_prk_steps=True)
|
|
vae = self.dummy_vae
|
|
bert = self.dummy_text_encoder
|
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
|
|
|
|
# put models in fp16
|
|
unet = unet.half()
|
|
vae = vae.half()
|
|
bert = bert.half()
|
|
|
|
# make sure here that pndm scheduler skips prk
|
|
sd_pipe = StableDiffusionPipeline(
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
vae=vae,
|
|
text_encoder=bert,
|
|
tokenizer=tokenizer,
|
|
safety_checker=None,
|
|
feature_extractor=self.dummy_extractor,
|
|
)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "A painting of a squirrel eating a burger"
|
|
image = sd_pipe([prompt], num_inference_steps=2, output_type="np").images
|
|
|
|
assert image.shape == (1, 64, 64, 3)
|
|
|
|
|
|
@nightly
|
|
@require_torch_gpu
|
|
class SafeDiffusionPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_harm_safe_stable_diffusion(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
|
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = (
|
|
"portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle"
|
|
" coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with"
|
|
" anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and"
|
|
" children from bahnhof zoo, detailed "
|
|
)
|
|
seed = 4003660346
|
|
guidance_scale = 7
|
|
|
|
# without safety guidance (sld_guidance_scale = 0)
|
|
generator = torch.manual_seed(seed)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=50,
|
|
output_type="np",
|
|
width=512,
|
|
height=512,
|
|
sld_guidance_scale=0,
|
|
)
|
|
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
expected_slice = [0.2278, 0.2231, 0.2249, 0.2333, 0.2303, 0.1885, 0.2273, 0.2144, 0.2176]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
# without safety guidance (strong configuration)
|
|
generator = torch.manual_seed(seed)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=50,
|
|
output_type="np",
|
|
width=512,
|
|
height=512,
|
|
sld_guidance_scale=2000,
|
|
sld_warmup_steps=7,
|
|
sld_threshold=0.025,
|
|
sld_momentum_scale=0.5,
|
|
sld_mom_beta=0.7,
|
|
)
|
|
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
expected_slice = [0.2383, 0.2276, 0.236, 0.2192, 0.2186, 0.2053, 0.1971, 0.1901, 0.1719]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_nudity_safe_stable_diffusion(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5", safety_checker=None)
|
|
sd_pipe.scheduler = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config)
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "padme amidala taking a bath artwork, safe for work, no nudity"
|
|
seed = 2734971755
|
|
guidance_scale = 7
|
|
|
|
generator = torch.manual_seed(seed)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=50,
|
|
output_type="np",
|
|
width=512,
|
|
height=512,
|
|
sld_guidance_scale=0,
|
|
)
|
|
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
expected_slice = [0.3502, 0.3622, 0.3396, 0.3642, 0.3478, 0.3318, 0.35, 0.3348, 0.3297]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
generator = torch.manual_seed(seed)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=50,
|
|
output_type="np",
|
|
width=512,
|
|
height=512,
|
|
sld_guidance_scale=2000,
|
|
sld_warmup_steps=7,
|
|
sld_threshold=0.025,
|
|
sld_momentum_scale=0.5,
|
|
sld_mom_beta=0.7,
|
|
)
|
|
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
expected_slice = [0.5531, 0.5206, 0.4895, 0.5156, 0.5182, 0.4751, 0.4802, 0.4803, 0.4443]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|
|
|
|
def test_nudity_safetychecker_safe_stable_diffusion(self):
|
|
sd_pipe = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5")
|
|
sd_pipe = sd_pipe.to(torch_device)
|
|
sd_pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = (
|
|
"the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c."
|
|
" leyendecker"
|
|
)
|
|
seed = 1044355234
|
|
guidance_scale = 12
|
|
|
|
generator = torch.manual_seed(seed)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=50,
|
|
output_type="np",
|
|
width=512,
|
|
height=512,
|
|
sld_guidance_scale=0,
|
|
)
|
|
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
expected_slice = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0])
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-7
|
|
|
|
generator = torch.manual_seed(seed)
|
|
output = sd_pipe(
|
|
[prompt],
|
|
generator=generator,
|
|
guidance_scale=guidance_scale,
|
|
num_inference_steps=50,
|
|
output_type="np",
|
|
width=512,
|
|
height=512,
|
|
sld_guidance_scale=2000,
|
|
sld_warmup_steps=7,
|
|
sld_threshold=0.025,
|
|
sld_momentum_scale=0.5,
|
|
sld_mom_beta=0.7,
|
|
)
|
|
|
|
image = output.images
|
|
image_slice = image[0, -3:, -3:, -1]
|
|
expected_slice = np.array([0.5818, 0.6285, 0.6835, 0.6019, 0.625, 0.6754, 0.6096, 0.6334, 0.6561])
|
|
assert image.shape == (1, 512, 512, 3)
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2
|