130 lines
4.6 KiB
Python
130 lines
4.6 KiB
Python
# coding=utf-8
|
|
# Copyright 2023 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import tempfile
|
|
import unittest
|
|
|
|
import numpy as np
|
|
import torch
|
|
|
|
from diffusers import VersatileDiffusionPipeline
|
|
from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device
|
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False
|
|
|
|
|
|
class VersatileDiffusionMegaPipelineFastTests(unittest.TestCase):
|
|
pass
|
|
|
|
|
|
@nightly
|
|
@require_torch_gpu
|
|
class VersatileDiffusionMegaPipelineIntegrationTests(unittest.TestCase):
|
|
def tearDown(self):
|
|
# clean up the VRAM after each test
|
|
super().tearDown()
|
|
gc.collect()
|
|
torch.cuda.empty_cache()
|
|
|
|
def test_from_save_pretrained(self):
|
|
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
|
|
)
|
|
|
|
generator = torch.manual_seed(0)
|
|
image = pipe.dual_guided(
|
|
prompt="first prompt",
|
|
image=prompt_image,
|
|
text_to_image_strength=0.75,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=2,
|
|
output_type="numpy",
|
|
).images
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
pipe.save_pretrained(tmpdirname)
|
|
pipe = VersatileDiffusionPipeline.from_pretrained(tmpdirname, torch_dtype=torch.float16)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
generator = generator.manual_seed(0)
|
|
new_image = pipe.dual_guided(
|
|
prompt="first prompt",
|
|
image=prompt_image,
|
|
text_to_image_strength=0.75,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=2,
|
|
output_type="numpy",
|
|
).images
|
|
|
|
assert np.abs(image - new_image).sum() < 1e-5, "Models don't have the same forward pass"
|
|
|
|
def test_inference_dual_guided_then_text_to_image(self):
|
|
pipe = VersatileDiffusionPipeline.from_pretrained("shi-labs/versatile-diffusion", torch_dtype=torch.float16)
|
|
pipe.to(torch_device)
|
|
pipe.set_progress_bar_config(disable=None)
|
|
|
|
prompt = "cyberpunk 2077"
|
|
init_image = load_image(
|
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg"
|
|
)
|
|
generator = torch.manual_seed(0)
|
|
image = pipe.dual_guided(
|
|
prompt=prompt,
|
|
image=init_image,
|
|
text_to_image_strength=0.75,
|
|
generator=generator,
|
|
guidance_scale=7.5,
|
|
num_inference_steps=50,
|
|
output_type="numpy",
|
|
).images
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
|
|
|
|
prompt = "A painting of a squirrel eating a burger "
|
|
generator = torch.manual_seed(0)
|
|
image = pipe.text_to_image(
|
|
prompt=prompt, generator=generator, guidance_scale=7.5, num_inference_steps=50, output_type="numpy"
|
|
).images
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
|
|
|
|
image = pipe.image_variation(init_image, generator=generator, output_type="numpy").images
|
|
|
|
image_slice = image[0, 253:256, 253:256, -1]
|
|
|
|
assert image.shape == (1, 512, 512, 3)
|
|
expected_slice = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456])
|
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1
|