235 lines
7.2 KiB
Python
235 lines
7.2 KiB
Python
# coding=utf-8
|
|
# Copyright 2022 HuggingFace Inc.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import tempfile
|
|
import unittest
|
|
|
|
from diffusers import (
|
|
DDIMScheduler,
|
|
DDPMScheduler,
|
|
DPMSolverMultistepScheduler,
|
|
EulerAncestralDiscreteScheduler,
|
|
EulerDiscreteScheduler,
|
|
PNDMScheduler,
|
|
logging,
|
|
)
|
|
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
|
from diffusers.utils import deprecate
|
|
from diffusers.utils.testing_utils import CaptureLogger
|
|
|
|
|
|
class SampleObject(ConfigMixin):
|
|
config_name = "config.json"
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
a=2,
|
|
b=5,
|
|
c=(2, 5),
|
|
d="for diffusion",
|
|
e=[1, 3],
|
|
):
|
|
pass
|
|
|
|
|
|
class SampleObject2(ConfigMixin):
|
|
config_name = "config.json"
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
a=2,
|
|
b=5,
|
|
c=(2, 5),
|
|
d="for diffusion",
|
|
f=[1, 3],
|
|
):
|
|
pass
|
|
|
|
|
|
class SampleObject3(ConfigMixin):
|
|
config_name = "config.json"
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
a=2,
|
|
b=5,
|
|
c=(2, 5),
|
|
d="for diffusion",
|
|
e=[1, 3],
|
|
f=[1, 3],
|
|
):
|
|
pass
|
|
|
|
|
|
class ConfigTester(unittest.TestCase):
|
|
def test_load_not_from_mixin(self):
|
|
with self.assertRaises(ValueError):
|
|
ConfigMixin.load_config("dummy_path")
|
|
|
|
def test_register_to_config(self):
|
|
obj = SampleObject()
|
|
config = obj.config
|
|
assert config["a"] == 2
|
|
assert config["b"] == 5
|
|
assert config["c"] == (2, 5)
|
|
assert config["d"] == "for diffusion"
|
|
assert config["e"] == [1, 3]
|
|
|
|
# init ignore private arguments
|
|
obj = SampleObject(_name_or_path="lalala")
|
|
config = obj.config
|
|
assert config["a"] == 2
|
|
assert config["b"] == 5
|
|
assert config["c"] == (2, 5)
|
|
assert config["d"] == "for diffusion"
|
|
assert config["e"] == [1, 3]
|
|
|
|
# can override default
|
|
obj = SampleObject(c=6)
|
|
config = obj.config
|
|
assert config["a"] == 2
|
|
assert config["b"] == 5
|
|
assert config["c"] == 6
|
|
assert config["d"] == "for diffusion"
|
|
assert config["e"] == [1, 3]
|
|
|
|
# can use positional arguments.
|
|
obj = SampleObject(1, c=6)
|
|
config = obj.config
|
|
assert config["a"] == 1
|
|
assert config["b"] == 5
|
|
assert config["c"] == 6
|
|
assert config["d"] == "for diffusion"
|
|
assert config["e"] == [1, 3]
|
|
|
|
def test_save_load(self):
|
|
obj = SampleObject()
|
|
config = obj.config
|
|
|
|
assert config["a"] == 2
|
|
assert config["b"] == 5
|
|
assert config["c"] == (2, 5)
|
|
assert config["d"] == "for diffusion"
|
|
assert config["e"] == [1, 3]
|
|
|
|
with tempfile.TemporaryDirectory() as tmpdirname:
|
|
obj.save_config(tmpdirname)
|
|
new_obj = SampleObject.from_config(SampleObject.load_config(tmpdirname))
|
|
new_config = new_obj.config
|
|
|
|
# unfreeze configs
|
|
config = dict(config)
|
|
new_config = dict(new_config)
|
|
|
|
assert config.pop("c") == (2, 5) # instantiated as tuple
|
|
assert new_config.pop("c") == [2, 5] # saved & loaded as list because of json
|
|
assert config == new_config
|
|
|
|
def test_load_ddim_from_pndm(self):
|
|
logger = logging.get_logger("diffusers.configuration_utils")
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
ddim = DDIMScheduler.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
|
|
)
|
|
|
|
assert ddim.__class__ == DDIMScheduler
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
|
|
def test_load_euler_from_pndm(self):
|
|
logger = logging.get_logger("diffusers.configuration_utils")
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
euler = EulerDiscreteScheduler.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
|
|
)
|
|
|
|
assert euler.__class__ == EulerDiscreteScheduler
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
|
|
def test_load_euler_ancestral_from_pndm(self):
|
|
logger = logging.get_logger("diffusers.configuration_utils")
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
euler = EulerAncestralDiscreteScheduler.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
|
|
)
|
|
|
|
assert euler.__class__ == EulerAncestralDiscreteScheduler
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
|
|
def test_load_pndm(self):
|
|
logger = logging.get_logger("diffusers.configuration_utils")
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
pndm = PNDMScheduler.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
|
|
)
|
|
|
|
assert pndm.__class__ == PNDMScheduler
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
|
|
def test_overwrite_config_on_load(self):
|
|
logger = logging.get_logger("diffusers.configuration_utils")
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
ddpm = DDPMScheduler.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="scheduler",
|
|
prediction_type="sample",
|
|
beta_end=8,
|
|
)
|
|
|
|
with CaptureLogger(logger) as cap_logger_2:
|
|
ddpm_2 = DDPMScheduler.from_pretrained("google/ddpm-celebahq-256", beta_start=88)
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
deprecate("remove this case", "0.13.0", "remove")
|
|
ddpm_3 = DDPMScheduler.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch",
|
|
subfolder="scheduler",
|
|
predict_epsilon=False,
|
|
beta_end=8,
|
|
)
|
|
|
|
assert ddpm.__class__ == DDPMScheduler
|
|
assert ddpm.config.prediction_type == "sample"
|
|
assert ddpm.config.beta_end == 8
|
|
assert ddpm_2.config.beta_start == 88
|
|
assert ddpm_3.config.prediction_type == "sample"
|
|
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|
|
assert cap_logger_2.out == ""
|
|
|
|
def test_load_dpmsolver(self):
|
|
logger = logging.get_logger("diffusers.configuration_utils")
|
|
|
|
with CaptureLogger(logger) as cap_logger:
|
|
dpm = DPMSolverMultistepScheduler.from_pretrained(
|
|
"hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler"
|
|
)
|
|
|
|
assert dpm.__class__ == DPMSolverMultistepScheduler
|
|
# no warning should be thrown
|
|
assert cap_logger.out == ""
|