502 lines
24 KiB
Python
502 lines
24 KiB
Python
"""
|
|
modeled after the textual_inversion.py / train_dreambooth.py and the work
|
|
of justinpinkney here: https://github.com/justinpinkney/stable-diffusion/blob/main/notebooks/imagic.ipynb
|
|
"""
|
|
import inspect
|
|
import warnings
|
|
from typing import List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
|
|
import PIL
|
|
from accelerate import Accelerator
|
|
from diffusers import DiffusionPipeline
|
|
from diffusers.models import AutoencoderKL, UNet2DConditionModel
|
|
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
|
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
|
from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler
|
|
from diffusers.utils import deprecate, logging
|
|
|
|
# TODO: remove and import from diffusers.utils when the new version of diffusers is released
|
|
from packaging import version
|
|
from tqdm.auto import tqdm
|
|
from transformers import CLIPFeatureExtractor, CLIPTextModel, CLIPTokenizer
|
|
|
|
|
|
if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"):
|
|
PIL_INTERPOLATION = {
|
|
"linear": PIL.Image.Resampling.BILINEAR,
|
|
"bilinear": PIL.Image.Resampling.BILINEAR,
|
|
"bicubic": PIL.Image.Resampling.BICUBIC,
|
|
"lanczos": PIL.Image.Resampling.LANCZOS,
|
|
"nearest": PIL.Image.Resampling.NEAREST,
|
|
}
|
|
else:
|
|
PIL_INTERPOLATION = {
|
|
"linear": PIL.Image.LINEAR,
|
|
"bilinear": PIL.Image.BILINEAR,
|
|
"bicubic": PIL.Image.BICUBIC,
|
|
"lanczos": PIL.Image.LANCZOS,
|
|
"nearest": PIL.Image.NEAREST,
|
|
}
|
|
# ------------------------------------------------------------------------------
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
def preprocess(image):
|
|
w, h = image.size
|
|
w, h = map(lambda x: x - x % 32, (w, h)) # resize to integer multiple of 32
|
|
image = image.resize((w, h), resample=PIL_INTERPOLATION["lanczos"])
|
|
image = np.array(image).astype(np.float32) / 255.0
|
|
image = image[None].transpose(0, 3, 1, 2)
|
|
image = torch.from_numpy(image)
|
|
return 2.0 * image - 1.0
|
|
|
|
|
|
class ImagicStableDiffusionPipeline(DiffusionPipeline):
|
|
r"""
|
|
Pipeline for imagic image editing.
|
|
See paper here: https://arxiv.org/pdf/2210.09276.pdf
|
|
|
|
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
|
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
|
Args:
|
|
vae ([`AutoencoderKL`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
|
text_encoder ([`CLIPTextModel`]):
|
|
Frozen text-encoder. Stable Diffusion uses the text portion of
|
|
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
|
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
|
scheduler ([`SchedulerMixin`]):
|
|
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
|
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
|
safety_checker ([`StableDiffusionSafetyChecker`]):
|
|
Classification module that estimates whether generated images could be considered offsensive or harmful.
|
|
Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.
|
|
feature_extractor ([`CLIPFeatureExtractor`]):
|
|
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: Union[DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler],
|
|
safety_checker: StableDiffusionSafetyChecker,
|
|
feature_extractor: CLIPFeatureExtractor,
|
|
):
|
|
super().__init__()
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
unet=unet,
|
|
scheduler=scheduler,
|
|
safety_checker=safety_checker,
|
|
feature_extractor=feature_extractor,
|
|
)
|
|
|
|
def enable_attention_slicing(self, slice_size: Optional[Union[str, int]] = "auto"):
|
|
r"""
|
|
Enable sliced attention computation.
|
|
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
|
|
in several steps. This is useful to save some memory in exchange for a small speed decrease.
|
|
Args:
|
|
slice_size (`str` or `int`, *optional*, defaults to `"auto"`):
|
|
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
|
|
a number is provided, uses as many slices as `attention_head_dim // slice_size`. In this case,
|
|
`attention_head_dim` must be a multiple of `slice_size`.
|
|
"""
|
|
if slice_size == "auto":
|
|
# half the attention head size is usually a good trade-off between
|
|
# speed and memory
|
|
slice_size = self.unet.config.attention_head_dim // 2
|
|
self.unet.set_attention_slice(slice_size)
|
|
|
|
def disable_attention_slicing(self):
|
|
r"""
|
|
Disable sliced attention computation. If `enable_attention_slicing` was previously invoked, this method will go
|
|
back to computing attention in one step.
|
|
"""
|
|
# set slice_size = `None` to disable `attention slicing`
|
|
self.enable_attention_slicing(None)
|
|
|
|
def train(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
image: Union[torch.FloatTensor, PIL.Image.Image],
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
generator: Optional[torch.Generator] = None,
|
|
embedding_learning_rate: float = 0.001,
|
|
diffusion_model_learning_rate: float = 2e-6,
|
|
text_embedding_optimization_steps: int = 500,
|
|
model_fine_tuning_optimization_steps: int = 1000,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
Args:
|
|
prompt (`str` or `List[str]`):
|
|
The prompt or prompts to guide the image generation.
|
|
height (`int`, *optional*, defaults to 512):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to 512):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator`, *optional*):
|
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
message = "Please use `image` instead of `init_image`."
|
|
init_image = deprecate("init_image", "0.13.0", message, take_from=kwargs)
|
|
image = init_image or image
|
|
|
|
accelerator = Accelerator(
|
|
gradient_accumulation_steps=1,
|
|
mixed_precision="fp16",
|
|
)
|
|
|
|
if "torch_device" in kwargs:
|
|
device = kwargs.pop("torch_device")
|
|
warnings.warn(
|
|
"`torch_device` is deprecated as an input argument to `__call__` and will be removed in v0.3.0."
|
|
" Consider using `pipe.to(torch_device)` instead."
|
|
)
|
|
|
|
if device is None:
|
|
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
self.to(device)
|
|
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
# Freeze vae and unet
|
|
self.vae.requires_grad_(False)
|
|
self.unet.requires_grad_(False)
|
|
self.text_encoder.requires_grad_(False)
|
|
self.unet.eval()
|
|
self.vae.eval()
|
|
self.text_encoder.eval()
|
|
|
|
if accelerator.is_main_process:
|
|
accelerator.init_trackers(
|
|
"imagic",
|
|
config={
|
|
"embedding_learning_rate": embedding_learning_rate,
|
|
"text_embedding_optimization_steps": text_embedding_optimization_steps,
|
|
},
|
|
)
|
|
|
|
# get text embeddings for prompt
|
|
text_input = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_embeddings = torch.nn.Parameter(
|
|
self.text_encoder(text_input.input_ids.to(self.device))[0], requires_grad=True
|
|
)
|
|
text_embeddings = text_embeddings.detach()
|
|
text_embeddings.requires_grad_()
|
|
text_embeddings_orig = text_embeddings.clone()
|
|
|
|
# Initialize the optimizer
|
|
optimizer = torch.optim.Adam(
|
|
[text_embeddings], # only optimize the embeddings
|
|
lr=embedding_learning_rate,
|
|
)
|
|
|
|
if isinstance(image, PIL.Image.Image):
|
|
image = preprocess(image)
|
|
|
|
latents_dtype = text_embeddings.dtype
|
|
image = image.to(device=self.device, dtype=latents_dtype)
|
|
init_latent_image_dist = self.vae.encode(image).latent_dist
|
|
image_latents = init_latent_image_dist.sample(generator=generator)
|
|
image_latents = 0.18215 * image_latents
|
|
|
|
progress_bar = tqdm(range(text_embedding_optimization_steps), disable=not accelerator.is_local_main_process)
|
|
progress_bar.set_description("Steps")
|
|
|
|
global_step = 0
|
|
|
|
logger.info("First optimizing the text embedding to better reconstruct the init image")
|
|
for _ in range(text_embedding_optimization_steps):
|
|
with accelerator.accumulate(text_embeddings):
|
|
# Sample noise that we'll add to the latents
|
|
noise = torch.randn(image_latents.shape).to(image_latents.device)
|
|
timesteps = torch.randint(1000, (1,), device=image_latents.device)
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps)
|
|
|
|
# Predict the noise residual
|
|
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
|
|
|
|
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
|
|
accelerator.backward(loss)
|
|
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
|
|
progress_bar.set_postfix(**logs)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
accelerator.wait_for_everyone()
|
|
|
|
text_embeddings.requires_grad_(False)
|
|
|
|
# Now we fine tune the unet to better reconstruct the image
|
|
self.unet.requires_grad_(True)
|
|
self.unet.train()
|
|
optimizer = torch.optim.Adam(
|
|
self.unet.parameters(), # only optimize unet
|
|
lr=diffusion_model_learning_rate,
|
|
)
|
|
progress_bar = tqdm(range(model_fine_tuning_optimization_steps), disable=not accelerator.is_local_main_process)
|
|
|
|
logger.info("Next fine tuning the entire model to better reconstruct the init image")
|
|
for _ in range(model_fine_tuning_optimization_steps):
|
|
with accelerator.accumulate(self.unet.parameters()):
|
|
# Sample noise that we'll add to the latents
|
|
noise = torch.randn(image_latents.shape).to(image_latents.device)
|
|
timesteps = torch.randint(1000, (1,), device=image_latents.device)
|
|
|
|
# Add noise to the latents according to the noise magnitude at each timestep
|
|
# (this is the forward diffusion process)
|
|
noisy_latents = self.scheduler.add_noise(image_latents, noise, timesteps)
|
|
|
|
# Predict the noise residual
|
|
noise_pred = self.unet(noisy_latents, timesteps, text_embeddings).sample
|
|
|
|
loss = F.mse_loss(noise_pred, noise, reduction="none").mean([1, 2, 3]).mean()
|
|
accelerator.backward(loss)
|
|
|
|
optimizer.step()
|
|
optimizer.zero_grad()
|
|
|
|
# Checks if the accelerator has performed an optimization step behind the scenes
|
|
if accelerator.sync_gradients:
|
|
progress_bar.update(1)
|
|
global_step += 1
|
|
|
|
logs = {"loss": loss.detach().item()} # , "lr": lr_scheduler.get_last_lr()[0]}
|
|
progress_bar.set_postfix(**logs)
|
|
accelerator.log(logs, step=global_step)
|
|
|
|
accelerator.wait_for_everyone()
|
|
self.text_embeddings_orig = text_embeddings_orig
|
|
self.text_embeddings = text_embeddings
|
|
|
|
@torch.no_grad()
|
|
def __call__(
|
|
self,
|
|
alpha: float = 1.2,
|
|
height: Optional[int] = 512,
|
|
width: Optional[int] = 512,
|
|
num_inference_steps: Optional[int] = 50,
|
|
generator: Optional[torch.Generator] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
guidance_scale: float = 7.5,
|
|
eta: float = 0.0,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
Args:
|
|
prompt (`str` or `List[str]`):
|
|
The prompt or prompts to guide the image generation.
|
|
height (`int`, *optional*, defaults to 512):
|
|
The height in pixels of the generated image.
|
|
width (`int`, *optional*, defaults to 512):
|
|
The width in pixels of the generated image.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 7.5):
|
|
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
|
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
|
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
|
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
|
usually at the expense of lower image quality.
|
|
eta (`float`, *optional*, defaults to 0.0):
|
|
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
|
[`schedulers.DDIMScheduler`], will be ignored for others.
|
|
generator (`torch.Generator`, *optional*):
|
|
A [torch generator](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation
|
|
deterministic.
|
|
latents (`torch.FloatTensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `nd.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
|
plain tuple.
|
|
Returns:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:
|
|
[`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] if `return_dict` is True, otherwise a `tuple.
|
|
When returning a tuple, the first element is a list with the generated images, and the second element is a
|
|
list of `bool`s denoting whether the corresponding generated image likely represents "not-safe-for-work"
|
|
(nsfw) content, according to the `safety_checker`.
|
|
"""
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
if self.text_embeddings is None:
|
|
raise ValueError("Please run the pipe.train() before trying to generate an image.")
|
|
if self.text_embeddings_orig is None:
|
|
raise ValueError("Please run the pipe.train() before trying to generate an image.")
|
|
|
|
text_embeddings = alpha * self.text_embeddings_orig + (1 - alpha) * self.text_embeddings
|
|
|
|
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
|
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
|
# corresponds to doing no classifier free guidance.
|
|
do_classifier_free_guidance = guidance_scale > 1.0
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance:
|
|
uncond_tokens = [""]
|
|
max_length = self.tokenizer.model_max_length
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
uncond_embeddings = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
|
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = uncond_embeddings.shape[1]
|
|
uncond_embeddings = uncond_embeddings.view(1, seq_len, -1)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
text_embeddings = torch.cat([uncond_embeddings, text_embeddings])
|
|
|
|
# get the initial random noise unless the user supplied it
|
|
|
|
# Unlike in other pipelines, latents need to be generated in the target device
|
|
# for 1-to-1 results reproducibility with the CompVis implementation.
|
|
# However this currently doesn't work in `mps`.
|
|
latents_shape = (1, self.unet.in_channels, height // 8, width // 8)
|
|
latents_dtype = text_embeddings.dtype
|
|
if self.device.type == "mps":
|
|
# randn does not exist on mps
|
|
latents = torch.randn(latents_shape, generator=generator, device="cpu", dtype=latents_dtype).to(
|
|
self.device
|
|
)
|
|
else:
|
|
latents = torch.randn(latents_shape, generator=generator, device=self.device, dtype=latents_dtype)
|
|
|
|
# set timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps)
|
|
|
|
# Some schedulers like PNDM have timesteps as arrays
|
|
# It's more optimized to move all timesteps to correct device beforehand
|
|
timesteps_tensor = self.scheduler.timesteps.to(self.device)
|
|
|
|
# scale the initial noise by the standard deviation required by the scheduler
|
|
latents = latents * self.scheduler.init_noise_sigma
|
|
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
|
# and should be between [0, 1]
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
for i, t in enumerate(self.progress_bar(timesteps_tensor)):
|
|
# expand the latents if we are doing classifier free guidance
|
|
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
|
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(latent_model_input, t, encoder_hidden_states=text_embeddings).sample
|
|
|
|
# perform guidance
|
|
if do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).prev_sample
|
|
|
|
latents = 1 / 0.18215 * latents
|
|
image = self.vae.decode(latents).sample
|
|
|
|
image = (image / 2 + 0.5).clamp(0, 1)
|
|
|
|
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloa16
|
|
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
|
|
|
if self.safety_checker is not None:
|
|
safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(
|
|
self.device
|
|
)
|
|
image, has_nsfw_concept = self.safety_checker(
|
|
images=image, clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype)
|
|
)
|
|
else:
|
|
has_nsfw_concept = None
|
|
|
|
if output_type == "pil":
|
|
image = self.numpy_to_pil(image)
|
|
|
|
if not return_dict:
|
|
return (image, has_nsfw_concept)
|
|
|
|
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|