153 lines
4.7 KiB
Python
153 lines
4.7 KiB
Python
from typing import Union
|
|
|
|
import torch
|
|
|
|
from diffusers import (
|
|
AutoencoderKL,
|
|
DDIMScheduler,
|
|
DiffusionPipeline,
|
|
LMSDiscreteScheduler,
|
|
PNDMScheduler,
|
|
UNet2DConditionModel,
|
|
)
|
|
from PIL import Image
|
|
from torchvision import transforms as tfms
|
|
from tqdm.auto import tqdm
|
|
from transformers import CLIPTextModel, CLIPTokenizer
|
|
|
|
|
|
class MagicMixPipeline(DiffusionPipeline):
|
|
def __init__(
|
|
self,
|
|
vae: AutoencoderKL,
|
|
text_encoder: CLIPTextModel,
|
|
tokenizer: CLIPTokenizer,
|
|
unet: UNet2DConditionModel,
|
|
scheduler: Union[PNDMScheduler, LMSDiscreteScheduler, DDIMScheduler],
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(vae=vae, text_encoder=text_encoder, tokenizer=tokenizer, unet=unet, scheduler=scheduler)
|
|
|
|
# convert PIL image to latents
|
|
def encode(self, img):
|
|
with torch.no_grad():
|
|
latent = self.vae.encode(tfms.ToTensor()(img).unsqueeze(0).to(self.device) * 2 - 1)
|
|
latent = 0.18215 * latent.latent_dist.sample()
|
|
return latent
|
|
|
|
# convert latents to PIL image
|
|
def decode(self, latent):
|
|
latent = (1 / 0.18215) * latent
|
|
with torch.no_grad():
|
|
img = self.vae.decode(latent).sample
|
|
img = (img / 2 + 0.5).clamp(0, 1)
|
|
img = img.detach().cpu().permute(0, 2, 3, 1).numpy()
|
|
img = (img * 255).round().astype("uint8")
|
|
return Image.fromarray(img[0])
|
|
|
|
# convert prompt into text embeddings, also unconditional embeddings
|
|
def prep_text(self, prompt):
|
|
text_input = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_embedding = self.text_encoder(text_input.input_ids.to(self.device))[0]
|
|
|
|
uncond_input = self.tokenizer(
|
|
"",
|
|
padding="max_length",
|
|
max_length=self.tokenizer.model_max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
uncond_embedding = self.text_encoder(uncond_input.input_ids.to(self.device))[0]
|
|
|
|
return torch.cat([uncond_embedding, text_embedding])
|
|
|
|
def __call__(
|
|
self,
|
|
img: Image.Image,
|
|
prompt: str,
|
|
kmin: float = 0.3,
|
|
kmax: float = 0.6,
|
|
mix_factor: float = 0.5,
|
|
seed: int = 42,
|
|
steps: int = 50,
|
|
guidance_scale: float = 7.5,
|
|
) -> Image.Image:
|
|
tmin = steps - int(kmin * steps)
|
|
tmax = steps - int(kmax * steps)
|
|
|
|
text_embeddings = self.prep_text(prompt)
|
|
|
|
self.scheduler.set_timesteps(steps)
|
|
|
|
width, height = img.size
|
|
encoded = self.encode(img)
|
|
|
|
torch.manual_seed(seed)
|
|
noise = torch.randn(
|
|
(1, self.unet.in_channels, height // 8, width // 8),
|
|
).to(self.device)
|
|
|
|
latents = self.scheduler.add_noise(
|
|
encoded,
|
|
noise,
|
|
timesteps=self.scheduler.timesteps[tmax],
|
|
)
|
|
|
|
input = torch.cat([latents] * 2)
|
|
|
|
input = self.scheduler.scale_model_input(input, self.scheduler.timesteps[tmax])
|
|
|
|
with torch.no_grad():
|
|
pred = self.unet(
|
|
input,
|
|
self.scheduler.timesteps[tmax],
|
|
encoder_hidden_states=text_embeddings,
|
|
).sample
|
|
|
|
pred_uncond, pred_text = pred.chunk(2)
|
|
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)
|
|
|
|
latents = self.scheduler.step(pred, self.scheduler.timesteps[tmax], latents).prev_sample
|
|
|
|
for i, t in enumerate(tqdm(self.scheduler.timesteps)):
|
|
if i > tmax:
|
|
if i < tmin: # layout generation phase
|
|
orig_latents = self.scheduler.add_noise(
|
|
encoded,
|
|
noise,
|
|
timesteps=t,
|
|
)
|
|
|
|
input = (mix_factor * latents) + (
|
|
1 - mix_factor
|
|
) * orig_latents # interpolating between layout noise and conditionally generated noise to preserve layout sematics
|
|
input = torch.cat([input] * 2)
|
|
|
|
else: # content generation phase
|
|
input = torch.cat([latents] * 2)
|
|
|
|
input = self.scheduler.scale_model_input(input, t)
|
|
|
|
with torch.no_grad():
|
|
pred = self.unet(
|
|
input,
|
|
t,
|
|
encoder_hidden_states=text_embeddings,
|
|
).sample
|
|
|
|
pred_uncond, pred_text = pred.chunk(2)
|
|
pred = pred_uncond + guidance_scale * (pred_text - pred_uncond)
|
|
|
|
latents = self.scheduler.step(pred, t, latents).prev_sample
|
|
|
|
return self.decode(latents)
|