mirror of https://github.com/go-gitea/gitea.git
183 lines
4.6 KiB
Go
183 lines
4.6 KiB
Go
package brotli
|
|
|
|
func utf8Position(last uint, c uint, clamp uint) uint {
|
|
if c < 128 {
|
|
return 0 /* Next one is the 'Byte 1' again. */
|
|
} else if c >= 192 { /* Next one is the 'Byte 2' of utf-8 encoding. */
|
|
return brotli_min_size_t(1, clamp)
|
|
} else {
|
|
/* Let's decide over the last byte if this ends the sequence. */
|
|
if last < 0xE0 {
|
|
return 0 /* Completed two or three byte coding. */ /* Next one is the 'Byte 3' of utf-8 encoding. */
|
|
} else {
|
|
return brotli_min_size_t(2, clamp)
|
|
}
|
|
}
|
|
}
|
|
|
|
func decideMultiByteStatsLevel(pos uint, len uint, mask uint, data []byte) uint {
|
|
var counts = [3]uint{0} /* should be 2, but 1 compresses better. */
|
|
var max_utf8 uint = 1
|
|
var last_c uint = 0
|
|
var i uint
|
|
for i = 0; i < len; i++ {
|
|
var c uint = uint(data[(pos+i)&mask])
|
|
counts[utf8Position(last_c, c, 2)]++
|
|
last_c = c
|
|
}
|
|
|
|
if counts[2] < 500 {
|
|
max_utf8 = 1
|
|
}
|
|
|
|
if counts[1]+counts[2] < 25 {
|
|
max_utf8 = 0
|
|
}
|
|
|
|
return max_utf8
|
|
}
|
|
|
|
func estimateBitCostsForLiteralsUTF8(pos uint, len uint, mask uint, data []byte, cost []float32) {
|
|
var max_utf8 uint = decideMultiByteStatsLevel(pos, uint(len), mask, data)
|
|
/* Bootstrap histograms. */
|
|
var histogram = [3][256]uint{[256]uint{0}}
|
|
var window_half uint = 495
|
|
var in_window uint = brotli_min_size_t(window_half, uint(len))
|
|
var in_window_utf8 = [3]uint{0}
|
|
/* max_utf8 is 0 (normal ASCII single byte modeling),
|
|
1 (for 2-byte UTF-8 modeling), or 2 (for 3-byte UTF-8 modeling). */
|
|
|
|
var i uint
|
|
{
|
|
var last_c uint = 0
|
|
var utf8_pos uint = 0
|
|
for i = 0; i < in_window; i++ {
|
|
var c uint = uint(data[(pos+i)&mask])
|
|
histogram[utf8_pos][c]++
|
|
in_window_utf8[utf8_pos]++
|
|
utf8_pos = utf8Position(last_c, c, max_utf8)
|
|
last_c = c
|
|
}
|
|
}
|
|
|
|
/* Compute bit costs with sliding window. */
|
|
for i = 0; i < len; i++ {
|
|
if i >= window_half {
|
|
var c uint
|
|
var last_c uint
|
|
if i < window_half+1 {
|
|
c = 0
|
|
} else {
|
|
c = uint(data[(pos+i-window_half-1)&mask])
|
|
}
|
|
if i < window_half+2 {
|
|
last_c = 0
|
|
} else {
|
|
last_c = uint(data[(pos+i-window_half-2)&mask])
|
|
}
|
|
/* Remove a byte in the past. */
|
|
|
|
var utf8_pos2 uint = utf8Position(last_c, c, max_utf8)
|
|
histogram[utf8_pos2][data[(pos+i-window_half)&mask]]--
|
|
in_window_utf8[utf8_pos2]--
|
|
}
|
|
|
|
if i+window_half < len {
|
|
var c uint = uint(data[(pos+i+window_half-1)&mask])
|
|
var last_c uint = uint(data[(pos+i+window_half-2)&mask])
|
|
/* Add a byte in the future. */
|
|
|
|
var utf8_pos2 uint = utf8Position(last_c, c, max_utf8)
|
|
histogram[utf8_pos2][data[(pos+i+window_half)&mask]]++
|
|
in_window_utf8[utf8_pos2]++
|
|
}
|
|
{
|
|
var c uint
|
|
var last_c uint
|
|
if i < 1 {
|
|
c = 0
|
|
} else {
|
|
c = uint(data[(pos+i-1)&mask])
|
|
}
|
|
if i < 2 {
|
|
last_c = 0
|
|
} else {
|
|
last_c = uint(data[(pos+i-2)&mask])
|
|
}
|
|
var utf8_pos uint = utf8Position(last_c, c, max_utf8)
|
|
var masked_pos uint = (pos + i) & mask
|
|
var histo uint = histogram[utf8_pos][data[masked_pos]]
|
|
var lit_cost float64
|
|
if histo == 0 {
|
|
histo = 1
|
|
}
|
|
|
|
lit_cost = fastLog2(in_window_utf8[utf8_pos]) - fastLog2(histo)
|
|
lit_cost += 0.02905
|
|
if lit_cost < 1.0 {
|
|
lit_cost *= 0.5
|
|
lit_cost += 0.5
|
|
}
|
|
|
|
/* Make the first bytes more expensive -- seems to help, not sure why.
|
|
Perhaps because the entropy source is changing its properties
|
|
rapidly in the beginning of the file, perhaps because the beginning
|
|
of the data is a statistical "anomaly". */
|
|
if i < 2000 {
|
|
lit_cost += 0.7 - (float64(2000-i) / 2000.0 * 0.35)
|
|
}
|
|
|
|
cost[i] = float32(lit_cost)
|
|
}
|
|
}
|
|
}
|
|
|
|
func estimateBitCostsForLiterals(pos uint, len uint, mask uint, data []byte, cost []float32) {
|
|
if isMostlyUTF8(data, pos, mask, uint(len), kMinUTF8Ratio) {
|
|
estimateBitCostsForLiteralsUTF8(pos, uint(len), mask, data, cost)
|
|
return
|
|
} else {
|
|
var histogram = [256]uint{0}
|
|
var window_half uint = 2000
|
|
var in_window uint = brotli_min_size_t(window_half, uint(len))
|
|
var i uint
|
|
/* Bootstrap histogram. */
|
|
for i = 0; i < in_window; i++ {
|
|
histogram[data[(pos+i)&mask]]++
|
|
}
|
|
|
|
/* Compute bit costs with sliding window. */
|
|
for i = 0; i < len; i++ {
|
|
var histo uint
|
|
if i >= window_half {
|
|
/* Remove a byte in the past. */
|
|
histogram[data[(pos+i-window_half)&mask]]--
|
|
|
|
in_window--
|
|
}
|
|
|
|
if i+window_half < len {
|
|
/* Add a byte in the future. */
|
|
histogram[data[(pos+i+window_half)&mask]]++
|
|
|
|
in_window++
|
|
}
|
|
|
|
histo = histogram[data[(pos+i)&mask]]
|
|
if histo == 0 {
|
|
histo = 1
|
|
}
|
|
{
|
|
var lit_cost float64 = fastLog2(in_window) - fastLog2(histo)
|
|
lit_cost += 0.029
|
|
if lit_cost < 1.0 {
|
|
lit_cost *= 0.5
|
|
lit_cost += 0.5
|
|
}
|
|
|
|
cost[i] = float32(lit_cost)
|
|
}
|
|
}
|
|
}
|
|
}
|