Add active attribute to the cache of SWRaid members. Move parsing of
/proc/mdstat to discover busy SWRaid members into the cache loading
code. New parsing code is a little different because it is finding all
members of active arrays rather than determining if a specific member is
active.
Bug 756829 - SWRaid member detection enhancements
Command exit status is a 1 byte value between 0 and 255. [1][2] However
at the Unix API level the value is encoded as documented in the
waitpid(2) manual page. This is true for the Glib API too. [3] This is
why, for example, the comment in ext2::check_repair() reported receiving
undocumented exit status 256. It was actually receiving exit status 1
encoded as per the waitpid(2) method.
Add shell style exit status decoding [2] to execution of all external
commands. Return value from Utils::execute_command() and
FileSystem::execute_command() functions are now:
0 - 125 - Exit status from the command
126 - Error executing the command
127 - Command not found
128+N - Command terminated by signal N
255 - Unexpected waitpid(2) condition
Also adjust checking of the returned statuses as necessary.
[1] Advanced Bash-Scripting Guide: Appendix D. Exit Codes With Special
Meanings
http://www.linuxtopia.org/online_books/advanced_bash_scripting_guide/exitcodes.html
[2] Quote from the bash(1) manual page:
EXIT STATUS
... Exit statuses fall between 0 and 255, though as
explained below, the shell may use values above 125
specially. ...
... When a command terminates on a fatal signal N, bash uses
the value of 128+N as the exit status.
If a command is not found, the child process created to
execute it returns a status of 127. If a command is found
but is not executable, the return status is 126.
[3] Quote from the Glib Reference Manual, Spawning Processes section,
for function g_spawn_check_exit_status():
https://developer.gnome.org/glib/stable/glib-Spawning-Processes.html#g-spawn-check-exit-status
The g_spawn_sync() and g_child_watch_add() family of APIs return
an exit status for subprocesses encoded in a platform-specific
way. On Unix, this is guaranteed to be in the same format
waitpid() returns, ...
Bug 754684 - Updates to FileSystem:: and Utils::execute_command()
functions
Previously partition naming had only been implemented for gpt. Make the
code ready to support naming of the other partition table types for
which libparted supports naming. Specifically: amiga, dvh, mac and
pc98 in addition to gpt. Document issues found with some of these
partition table types, which can relatively easily been worked around.
Leave support of naming for partition table types other than gpt
disabled, mostly just to reduce ongoing testing effort, at least until
there is any user demand for it.
Bug 746214 - Partition naming enhancements
Function Utils::get_filesystem_kernel_name() returns the name of the
file system as needed for use in the mount command:
mount -t TYPE DEVICE DIR
Needed because the kernel / mount name is 'hfsplus' where as libparted /
GParted, as reported by Utils::get_filesystem_string(), calls it 'hfs+'.
So far just added debugging when mounting a file system to test the
function works.
# ./gartedbin
======================
libparted : 2.1
======================
DEBUG: (hfsplus) # mount -v /dev/sdb5 "/mnt/5"
DEBUG: (nilfs2) # mount -v /dev/sdb1 "/mnt/1"
Bug 742741 - Nilfs2 file system is unusable on RHEL/CentOS 6
Only recognises ReFS file system. No other actions are supported.
Requires blkid from util-linux >= 2.24.
Bug #738471 - ReFS file system is not recognised
GParted's primary inbuilt busy detection method is "is the partition
mounted?". A custom method is used for LVM2 PV because its not a
mounted file system.
Make busy detection selectable per file system type.
.fs.busy = FS::NONE (default)
No busy detection.
.fs.busy = FS::GPARTED
Use internal GParted method which checks if the partition is
mounted.
.fs.busy = FS:EXTERNAL
Call the file system type's member function is_busy().
LVM2 PV busy detection changes from a special case to just electing to
call the lvm2_pv::is_busy() method. Linux Software RAID remains a
special case because it's only recognised, but not otherwise supported.
Bug #723842 - GParted resizes the wrong filesystem (does not pass the
devid to btrfs filesystem resize)
As part of the work on bug 652044 - uses deprecated APIs, selectable
vertical alignment was defaulted to ALIGN_CENTER for all labels. The
relevant commits can be viewed in comment 26 of said bug report.
https://bugzilla.gnome.org/show_bug.cgi?id=652044#c26
For multi-line labels a vertical ALIGN_CENTER value is not
consistently aesthetically pleasing. This becomes obvious when a
single-line heading label is paired with a multi-line value label.
To improve the aesthetics, a vertical alignment of ALIGN_TOP is
preferred.
Hence re-add the ability to optionally specify a vertical alignment for
labels. If a yalign value is not specified a default vertical alignment
of ALIGN_CENTER is used.
Only recognises partitions containing BitLocker Disk Encryption content.
No other actions are supported.
Bug #723232 - BitLocker Disk Encryption not recognised
This is part of parent bug:
Bug #721455 - Obsolete info in license text on multiple modules
and GNOME Goal:
https://wiki.gnome.org/Initiatives/GnomeGoals/Proposals
* verify all source files to make sure they have a license and a
copyright, and that both are up-to-date
Bug #721565 - License text contains obsolete FSF postal address
Many file systems are capable of growing while mounted, and a few can
even shrink. This support must be explicitly enabled at configure time
with the --enable-online-resize flag and depends on a patched libparted.
Also requires kernel >= 3.6 for partition resizing, even if the
partition is in use (BLKPG_RESIZE_PARTITION).
Thanks to Mike Fleetwood for double check mark idea instead of a second
column to show the online grow/shrink.
Bug #694622 - Add support for online resize
Read the contents of /proc/mdstat file to determine if a device is a
member of of an active RAID array.
$ cat /proc/mdstat
Personalities : [raid1]
md1 : active raid1 sda1[2] sdb1[3]
524224 blocks super 1.0 [2/2] [UU]
md2 : active raid1 sdb2[2] sda2[3](F)
5238720 blocks super 1.1 [2/1] [U_]
md3 : active raid1 sdb3[1]
10477440 blocks super 1.1 [2/1] [_U]
bitmap: 1/1 pages [4KB], 65536KB chunk
md4 : inactive sda4[0](S)
1048564 blocks super 1.2
unused devices: <none>
There are 5 example Linux Software RAID arrays, md1 to md5. All are
RAID1 mirrors with 2 members, in various states.
Array Members Status
md1 sda1, sdb2 Fully operational.
md2 sda2, sdb2 Member sda2 marked as faulty. (Device sda2 is
still in use).
md3 sda3, sdb3 Member sda3 has been removed. (Device sda3 is
not in use).
md4 sda4, sdb4 Incremental start of member sda4 only. (Neither
member devices is in use).
md5 sda5, sdb5 Array stopped. (Neither member device is in
use).
Also disable "Unmount" in the partition menu for active RAID array
members.
Bug #709640 - Linux Swap Suspend and Software RAID partitions not
recognised
Recognise in kernel, Linux Swap Suspend partitions. (When hibernated
the kernel write the RAM out to swap space and changes the magic string
from swap space to suspend). Recognition required either
libparted >= 1.8.8.1 or blkid from util-linux >= 2.15 or before that
blkid from e2fsprogs >= 1.39.
Recognise Linux Software RAID partitions. Recognition requires blkid
from util-linux >= 2.15.
Example:
# blkid /dev/sda10 /dev/sda11
/dev/sda10: ... TYPE="swsuspend"
/dev/sda11: ... TYPE="linux_raid_member"
# parted /dev/sda print
Model: ATA SAMSUNG HM500JI (scsi)
Disk /dev/sda: 500GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Number Start End Size Type File system Flags
...
10 361GB 362GB 1074MB logical swsusp
11 362GB 363GB 1074MB logical raid
Bug #709640 - Linux Swap Suspend and Software RAID partitions not
recognised
Step 3 of 3:
Now that all label widgets are created with ALIGN_LEFT and ALIGN_CENTER
alignment remove the x_align and y_align parameters from mk_label() and
always use this alignment. Also specify this alignment via floats
rather than enumerators, one of which was deprecated.
Bug #652044 - uses deprecated APIs
Currently the btrfs command outputs figures to 2 decimal places followed
by an SI multiplier, e.g. 1.00GB.
This patch to btrfs-progs has been included in the integration
repository and will likely be included in the official btrfs-progs
repository at some point. It changes btrfs-progs to use IEC
multipliers, e.g. 1.00GiB. In fact multipliers already aren't used for
figures less than 1024.
[PATCH] btrfs-progs: use IEC units for size
http://permalink.gmane.org/gmane.comp.file-systems.btrfs/26888https://patchwork.kernel.org/patch/2825841/
Make GParted capable of also accepting IEC prefix multipliers, just "B"
for bytes and no multiplier, as well as an optional space between the
number and multiplier. Therefore accept values like these:
1.00GB 1.00 GB
1.00GiB 1.00 GiB
1073741824B 1073741824 B
1073741824
Closes Bug #706914 - Prepare for btrfs tools using IEC prefix
multipliers
With recent btrfs-progs, GParted failed to format a btrfs file system
over the top of an existing one. Make btrfs failed with this error:
# mkfs.btrfs /dev/sdb1
...
/dev/sdb1 appears to contain an existing filesystem (btrfs).
Use the -f option to force overwrite.
With this commit to btrfs-progs on 2013-02-19, mkfs.btrfs checks for
existing file system signatures, including all mirror copies of btrfs
super blocks, before writing to the partition.
http://git.kernel.org/cgit/linux/kernel/git/mason/btrfs-progs.git/commit/?id=2a2d8e1962e8b6cda7b0a7584f6d2fb95d442cb6
btrfs-progs: require mkfs -f force option to overwrite filesystem or partition table
Make GParted clear all the mirror copies of the btrfs file system super
blocks as erase_filesystem_signatures() is intended to prevent detection
of old signatures. This also avoids having to determine if the -f
option to mkfs.btrfs is available before trying to use it.
Closes Bug #705426 - Formatting Existing BTRFS Partition as BTRFS Fails
Because mkfs.btrfs Is Not Run with "-f"
It was difficult to retrieve whether a filesystem's label can be set on reformat.
The read_label flag can't be used as it decides whether to use the logic in the filesystem class
rather than the fallback in GParted::set_device_partitions, to determine the label of a partition.
The create_with_label flag is NONE for file systems that we cannot format with a
label (or that we cannot format at all).
The value is usually EXTERNAL for file systems that we can format with a label.
Include guards need to be unique within GParted code and all included
library header files.
http://en.wikipedia.org/wiki/Include_guard#Difficulties
Use this model for all include guards:
#ifndef GPARTED_FILE_NAME_H
#define GPARTED_FILE_NAME_H
...
#endif /* GPARTED_FILE_NAME_H */
Closes Bug #539297 - Make include guards unique
Add "cleared" to the bottom of list of file system formats available in
the Create new Partition dialog and in the Format to --> (file system
list) menu. This clears existing file system signatures in the newly
created partitions and existing partitions respectively.
Bug #688882 - Improve clearing of file system signatures
Only supports detection and creation of f2fs file systems. Requires
f2fs-tools and a blkid with f2fs support, util-linux > 2.22.2.
f2fs-tools v1.1.0 only supports file system creation.
Currently requires util-linux directly from the git repository as f2fs
support was only committed on 5 Feb 2013 and it has not yet been
released.
Closes Bug #695396 - Please apply f2fs patch
Win_Gparted and Dialog_Progress were creating threads to perform most
functions in the background. Most of the time, the only reason the
threads blocked was to execute an external command. The external command
execution has been changed to spawn the command asynchronously and wait
for completion with a nested main loop. While waiting for completion,
the pipe output is captured via events. In the future, this will allow
for it to be parsed in real time to obtain progress information.
Those tasks in GParted_Core that still block now spawn a background thread
and wait for it to complete with a nested main loop to avoid hanging the
gui.
Part of Bug #685740 - Refactor to use asynchronous command execution
No longer need to trim fat16, fat32 and xfs labels as all labels are
limited to their maximum lengths during entry.
Bug #689318 - filesystem type specific support for partition name
maximum length
A user had a 190 MiB partition containing an old ext2 file system. When
unmounted it was reported as filling the partition, but when mounted it
was reported as having 6% unallocated space. The file system's inode
tables were approximately twice the size of those created by default
with the current mkfs.ext2 defaults.
To create an equivalent file system in a 190 MiB partition:
mkfs.ext2 -N 97344 /dev/sda15
It turns out that for ext2, ext3 and ext4 file systems what was
described as intrinsic unallocated space during the development of
Bug #499202 is actually file system overhead. When mounted the ext2/3/4
kernel code reports the size of the file system after subtracting the
overhead. Overhead is made up of superblock backups, group descriptors,
allocation bitmaps and largest of all inode tables. E2fsprogs tools
don't subtract this overhead when reporting the file system size.
References:
* The Second Extended File System, Internal Layout, by Dave Poirier
http://www.nongnu.org/ext2-doc/ext2.html
* Linux ext2_statfs() function
http://lxr.linux.no/#linux+v3.5.3/fs/ext2/super.c#L1311
Call the file system specific method for reading the usage of ext2, ext3
and ext4 file systems while mounted. Make it read the file system size
from the on disk superblock to avoid subtraction of overhead and use the
statvfs() system call to return an up to date free space figure.
Bug #683255 - ext2: statvfs differs from dumpe2fs (x MB unallocated
space within the partition)
Each file system class can now choose how the size and free space of the
file system is determined when it is mounted.
.fs.online_read = FS::NONE (default)
Do nothing. Don't get the file system size and free space.
.fs.online_read = FS::GPARTED
Use internal GParted method which calls statvfs() system call on
the mounted file system.
.fs.online_read = FS::EXTERNAL
Call the file system's member function set_used_sectors(). This
is the same function as called when the file system is not
mounted. It can determine if the file system is mounted or not
by testing partition.busy and acting accordingly.
This means that determining the size and free space of active LVM2
Physical Volumes is no longer a special case. Instead the lvm2_pv class
just elects to have its set_used_sectors() method called for both the
active and deactive cases.
Bug #683255 - ext2: statvfs differs from dumpe2fs (x MB unallocated
space within the partition)
On Fedora up to and including Fedora 16 and Red Hat and CentOS up to the
current 6.3 release the UUID of an unmounted reiserfs file system is
displayed as "<no" and a GTK markup warning is written to the terminal.
This was because the reiserfs-utils package isn't linked with libuuid
support so reiserfs file systems were created with a Nil UUID (all
zeros). To read the UUID GParted first tries to retrieve the UUID from
the blkid command output via the FS_Info cache. Secondly it tries the
reiserfs file system specific read_uuid() method which uses the first
space separated word following the text "UUID:", hence it gets "<no".
# debugreiserfs /dev/sda15 2> /dev/null | grep UUID
UUID: <no libuuid installed>
In September 2012 Red Hat bug 660285 "reiserfstune compiled without UUID
support" was fixed for Fedora 16 and later releases. On Fedora with
this fix applied GParted will display the Nil UUID (all zeros) for a
previously created reiserfs file system rather than suppressing it.
Only accept valid, none Nil UUIDs in the reiserfs file system specific
read_uuid() method.
Bug #684115 - Reiserfs UUID reading issues on Fedora and CentOS
As LVM2 Physical Volumes can't be resized when they are members of
exported Volume Groups add a warning message to explain this fact.
Display the message as a partition specific warning and as additional
text when growing the file system to fill the partition is skipped for
the check operation and when pasting into an existing larger partition.
Bug #670171 - Add LVM PV read-write support
This commit only adds a remove() method to every file system and an
optional call to it in the relevant operations. All remove() methods
are no operations and not enabled.
The remove() method provides explicit controlled removal of a file
system before the partition is deleted or overwritten by being formatted
or pasted into. When implemented, it appears as an extra step in the
relevant operation. The file system specific remove() method is
explicitly allowed to fail and stop the operations currently being
applied.
This is different to the existing erase_filesystem_signatures() which
wipes any previous file system signatures immediately before a new file
system is written to ensure there is no possibility of the partition
containing two or more different file system signatures. It never fails
or reports anything to the user.
NOTE:
Most file systems should NOT implement a remove() method as it will
prevent recovery from accidental partition deletion.
Bug #670171 - Add LVM PV read-write support
In the Partition menu enable activation / deactivation of the LVM2
Volume Group of which the Physical Volume is a member.
Bug #670171 - Add LVM PV read-write support
The parted-3.1 release brings back FAT16/FAT32 and HFS/HFS+ file
system resize capabilities in a new libparted fs resize library.
The following operations are again available when GParted is linked
with parted-3.1:
FAT16 - grow and shrink
FAT32 - grow and shrink
HFS - shrink
HFS+ - shrink
Note that there is a difference in how move actions are handled for
FAT16/FAT32 file systems based on parted version.
When GParted is linked with parted >= 3.0:
FAT16 - move performed internally by GParted
FAT32 - move performed internally by GParted
When GParted is linked with parted < 3.0:
FAT16 - move performed by libparted
FAT32 - move performed by libparted
Thanks goes to Jim Meyering for restoring these file system resizing
capabilities in Parted 3.1 with a new libparted fs resize library.
Closes Bug #668281 - minimal file-system resize API? (FAT and HFS*
only)
Create function Utils::kernel_version_at_least() to check that the
current Linux kernel is a particular version or higher.
Update nilfs2 to use this function to determine whether the kernel is
new enough to support file system resizing.
Cache results from querying all LVM2 PVs in one go to minimise the
number of times lvm commands are executed. Take inspiration from
caching performed by FS_Info and Proc_Partitions_Info.
Bug #160787 - lvm support
This is the first step of adding support for just LVM2 Phyiscal Volumes,
a subset of full LVM2 support.
Make it clear that it is only LVM2 PVs being treated like a file system.
Bug #160787 - lvm support
Add the ability to set a new random UUID on file systems that provide
the appropriate tools to perform this action.
Update the help manual to include this new functionality. Also add
reference links to "setting a partition label" and "changing a
partition UUID" in the "copying and pasting a partition" section.
This patch does not include setting the UUID on an NTFS file system.
Bug #667278 - Add support for setting UUID
Bug #608308 - fix documentation - Copying and Pasting a Partition
There is a lot of commonality and code repetition for resizing of file
systems which can only be resized while mounted. Resizing of btrfs, jfs
and xfs all follow the pattern: mkdir, mount, resize, umount and rmdir.
Copying an xfs file system also uses a similar pattern, but for the
source and destination xfs file systems simultaneously.
Add three helper functions to the FileSystem class which implement
common tasks, allowing mounted file system resizing to be implemented
more simply.
Also add a function to the Utils class which checks whether the kernel
supports a file system. It handles the case of non-loaded modules,
which currently leads to reporting the growing of jfs and xfs as
unsupported.
Requires libparted 2.4 or higher, or blkid from utils-linux 2.20 or
higher for nilfs2 file system detection.
Requires nilfs-utils for nilfs2 file system support.
Closes Bug #642842 - nilfs is not detected
The release of (lib)parted 3.0 includes a change to the Application
Programing Interface - API. Most importantly, libparted 3.0 removes
many file system specific function calls, and hence the capabilities
provided by these functions. In order for GParted to compile and link
with libparted 3.0, this libparted functionality is lost.
Specifically, the functionality that is lost when GParted is compiled
and linked with libparted 3.0 is as follows:
- Loss of ability to grow and shrink FAT16 and FAT32 file systems
- Loss of ability to shrink HFS and HFS+ file systems
- Loss of ability to determine used and unused sectors in HFS and
HFS+ file systems
- Loss of ability to erase file system signatures on partition
create and format
It is hoped that other free software projects will include some or all
of the above lost functionality, which can then be added back to
GParted.
This commit includes a change in how FAT16 and FAT32 file systems are
moved. Specifically the move is now performed internally by GParted
when linked with libparted 3.0. The move functionality is provided by
libparted for prior libparted versions (e.g. less than 3.0).
This is the final enhancement in a series of commits that enable
GParted to compile with libparted version 3.0.
Closes Bug #651559 - Doesn't compile against parted 3.0
With the removal of the 512 byte constants, such as MEBIBYTE, it
was possible to rename the _FACTOR constants back to BYTE
constants. The _FACTOR constants, such as MEBI_FACTOR, were a
temporary measure to help in the transition to support devices
with sector sizes > 512 bytes.