Make the dialog resizable, add a vertical scrollbar to the information
and messages section, and set the initial height to ensure the dialog
fits entirely on an 800x600 screen.
A default height is required because some window managers, such as
fluxbox used in GParted Live, only permit resizing the height by using
the bottom corners of the dialog. If the dialog is too large for the
screen then the user would not be able to resize it.
Note that two default initial heights are used in an effort to minimize
the amount of extra whitespace.
Bug 690542 - Partition Information Dialog Warning not readable
The code used to unnecessarily destroy and re-create the file system
objects on every scan for file system support tools.
Instead only create the file system objects once and just call each
object's get_filesystem_support() method on each rescan.
Prior to commit:
1f3b11748e
Remove GParted_Core::p_filesystem (#683149)
set_proper_filesystems() used to set GParted_Core::p_filesystem member
variable to one of the FileSystem objects, but that was just treating it
like a local variable. After the commit local variables named
p_filesystem were used where required and set_proper_filesystem() became
a function which did nothing other than call get_filesystem_object().
Now remove set_proper_filesystem() altogether and use
get_filesystem_object() in its place.
Use e2image features added in e2fsprogs 1.42.9 to move/copy
an ext[234] file system more efficiently by skipping unused blocks.
Fall back to the internal copy algorithm if e2image is not found
or does not support move/copy.
Bug #721516 - Use e2image to move/copy ext[234] filesystems
Only recognises partitions containing BitLocker Disk Encryption content.
No other actions are supported.
Bug #723232 - BitLocker Disk Encryption not recognised
Restore the order of the source files so that they are once again
compiled in order A-Z, a-z. Order is obtained with:
fgrep .cc src/Makefile.am | LANG=C sort
fgrep .h include/Makefile.am | LANG=C sort
Make the dialog resizable, add a vertical scrollbar and set the minimum
(and therefore initial) height to 500 pixels. This is so that the
dialog entirely fits on an 800x600 screen, thus allowing the rescan
button to be pressed.
100 pixel difference is to account for the size of the top and bottom
GNOME 2 panels and two sets of title bars. Two sets of title bars
because the window manager tries to place the top of dialog title bars
in line with the bottom of the main window title bar.
Bug #342682 - too much information in 'features' dialog
Make the legend always shown, ready for when the dialog is resizable.
Change the widget containing the legend from an expander to a frame
widget. Set the frame to be borderless using a bold label as
recommended in the GNOME Human Interface Guidelines 2.2.1 / Controls /
Frames and Separators.
https://developer.gnome.org/hig-book/2.32/controls-frames.html.en
Bug #342682 - too much information in 'features' dialog
This is part of parent bug:
Bug #721455 - Obsolete info in license text on multiple modules
and GNOME Goal:
https://wiki.gnome.org/Initiatives/GnomeGoals/Proposals
* verify all source files to make sure they have a license and a
copyright, and that both are up-to-date
Bug #721565 - License text contains obsolete FSF postal address
In the Create Partition Table dialog display the entries in the combobox
in order.
Previously the default of MSDOS or GPT was moved to the first item in
the combobox. Now the partition table types remain in order with just
either MSDOS or GPT being selected as as the default as required.
The partition table types are displayed in the order supplied by
libparted, which is alphabetic except with "loop" last.
Bug #711098 - Default partition table can not handle > 2 TiB disks
MSDOS partition table is limited to addressing 2^32 sectors, limiting
disks using 512 byte sectors to 2 TiB in size. Fdisk reports the
following warning on disks 2 TiB and larger.
# truncate -s 2T /var/tmp/loop-2T
# losetup /dev/loop0 /var/tmp/loop-2T
# fdisk /dev/loop0
WARNING: The size of this disk is 2.2 TB (2199023255552 bytes).
DOS partition table format can not be used on drives for volumes
larger than (2199023255040 bytes) for 512-byte sectors. Use parted(1) and GUID
partition table format (GPT).
(Fdisk arguably reports this warning one sector too early. Anyway for
safety and consistency GParted will use this limit too). Continue to
use MSDOS as the default partition table type for disks smaller than 2
TiB and use GPT as the default for disks 2 TiB and larger. This
maximises compatibility.
Also remove the advanced expander and always show the partition table
list box.
Bug #711098 - Default partition table can not handle > 2 TiB disks
Many file systems are capable of growing while mounted, and a few can
even shrink. This support must be explicitly enabled at configure time
with the --enable-online-resize flag and depends on a patched libparted.
Also requires kernel >= 3.6 for partition resizing, even if the
partition is in use (BLKPG_RESIZE_PARTITION).
Thanks to Mike Fleetwood for double check mark idea instead of a second
column to show the online grow/shrink.
Bug #694622 - Add support for online resize
Read the contents of /proc/mdstat file to determine if a device is a
member of of an active RAID array.
$ cat /proc/mdstat
Personalities : [raid1]
md1 : active raid1 sda1[2] sdb1[3]
524224 blocks super 1.0 [2/2] [UU]
md2 : active raid1 sdb2[2] sda2[3](F)
5238720 blocks super 1.1 [2/1] [U_]
md3 : active raid1 sdb3[1]
10477440 blocks super 1.1 [2/1] [_U]
bitmap: 1/1 pages [4KB], 65536KB chunk
md4 : inactive sda4[0](S)
1048564 blocks super 1.2
unused devices: <none>
There are 5 example Linux Software RAID arrays, md1 to md5. All are
RAID1 mirrors with 2 members, in various states.
Array Members Status
md1 sda1, sdb2 Fully operational.
md2 sda2, sdb2 Member sda2 marked as faulty. (Device sda2 is
still in use).
md3 sda3, sdb3 Member sda3 has been removed. (Device sda3 is
not in use).
md4 sda4, sdb4 Incremental start of member sda4 only. (Neither
member devices is in use).
md5 sda5, sdb5 Array stopped. (Neither member device is in
use).
Also disable "Unmount" in the partition menu for active RAID array
members.
Bug #709640 - Linux Swap Suspend and Software RAID partitions not
recognised
Recognise in kernel, Linux Swap Suspend partitions. (When hibernated
the kernel write the RAM out to swap space and changes the magic string
from swap space to suspend). Recognition required either
libparted >= 1.8.8.1 or blkid from util-linux >= 2.15 or before that
blkid from e2fsprogs >= 1.39.
Recognise Linux Software RAID partitions. Recognition requires blkid
from util-linux >= 2.15.
Example:
# blkid /dev/sda10 /dev/sda11
/dev/sda10: ... TYPE="swsuspend"
/dev/sda11: ... TYPE="linux_raid_member"
# parted /dev/sda print
Model: ATA SAMSUNG HM500JI (scsi)
Disk /dev/sda: 500GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Number Start End Size Type File system Flags
...
10 361GB 362GB 1074MB logical swsusp
11 362GB 363GB 1074MB logical raid
Bug #709640 - Linux Swap Suspend and Software RAID partitions not
recognised
Step 3 of 3:
Now that all label widgets are created with ALIGN_LEFT and ALIGN_CENTER
alignment remove the x_align and y_align parameters from mk_label() and
always use this alignment. Also specify this alignment via floats
rather than enumerators, one of which was deprecated.
Bug #652044 - uses deprecated APIs
Add concept of cursor position within the current line, separate from
the end of the buffer. This is so that programs which output a text
progress bar using backspace, such as resize2fs -p, are displayed
correctly.
Bug #709276 - Percentage indicator for subcommand
For active swap space read the usage from /proc/swaps. (Linux kernel
uses units of 1 KiB). By definition inactive swap space is 100% free.
$ cat /proc/swaps
Filename Type Size Used Priority
/dev/sda2 partition 5242876 430552 -1
Always set fs.read = FS::EXTERNAL even if /proc/swaps doesn't exist so
that an attempt is made to open the file generating a specific error, in
addition to the generic error.
open("/proc/swaps", O_RDONLY): No such file or directory
Unable to read the contents of this file system!
Because of this some operations may be unavailable.
The cause might be a missing software package.
The following list of software packages is required for linux-
swap file system support: util-linux.
Closes Bug #708107 - Usage of swap space is not reported
Currently the btrfs command outputs figures to 2 decimal places followed
by an SI multiplier, e.g. 1.00GB.
This patch to btrfs-progs has been included in the integration
repository and will likely be included in the official btrfs-progs
repository at some point. It changes btrfs-progs to use IEC
multipliers, e.g. 1.00GiB. In fact multipliers already aren't used for
figures less than 1024.
[PATCH] btrfs-progs: use IEC units for size
http://permalink.gmane.org/gmane.comp.file-systems.btrfs/26888https://patchwork.kernel.org/patch/2825841/
Make GParted capable of also accepting IEC prefix multipliers, just "B"
for bytes and no multiplier, as well as an optional space between the
number and multiplier. Therefore accept values like these:
1.00GB 1.00 GB
1.00GiB 1.00 GiB
1073741824B 1073741824 B
1073741824
Closes Bug #706914 - Prepare for btrfs tools using IEC prefix
multipliers
With recent btrfs-progs, GParted failed to format a btrfs file system
over the top of an existing one. Make btrfs failed with this error:
# mkfs.btrfs /dev/sdb1
...
/dev/sdb1 appears to contain an existing filesystem (btrfs).
Use the -f option to force overwrite.
With this commit to btrfs-progs on 2013-02-19, mkfs.btrfs checks for
existing file system signatures, including all mirror copies of btrfs
super blocks, before writing to the partition.
http://git.kernel.org/cgit/linux/kernel/git/mason/btrfs-progs.git/commit/?id=2a2d8e1962e8b6cda7b0a7584f6d2fb95d442cb6
btrfs-progs: require mkfs -f force option to overwrite filesystem or partition table
Make GParted clear all the mirror copies of the btrfs file system super
blocks as erase_filesystem_signatures() is intended to prevent detection
of old signatures. This also avoids having to determine if the -f
option to mkfs.btrfs is available before trying to use it.
Closes Bug #705426 - Formatting Existing BTRFS Partition as BTRFS Fails
Because mkfs.btrfs Is Not Run with "-f"
Dosfstools >= 3.0.18, released June 2013, renamed the programs thus:
dosfslabel becomes fatlabel,
dosfsck becomes fsck.fat,
and mkdosfs becomes mkfs.fat.
Dosfstools creates symbolic links for the old names for backward
compatibility, but unfortunately the Debian dosfstools-3.0.22-1
(experimental) package doesn't include those symbolic links. This
causes create, check and read unmounted FAT16/32 file systems to not be
supported.
Make GParted look for the new names first and the old names second.
Closes Bug #704629 - Program name changes in dosfstools 3.0.18+ break
FAT16/32 support
It was difficult to retrieve whether a filesystem's label can be set on reformat.
The read_label flag can't be used as it decides whether to use the logic in the filesystem class
rather than the fallback in GParted::set_device_partitions, to determine the label of a partition.
The create_with_label flag is NONE for file systems that we cannot format with a
label (or that we cannot format at all).
The value is usually EXTERNAL for file systems that we can format with a label.
The read-only functionality is unused and the readonly parameter is
always false in copy_filesystem() and copy_blocks() methods. This has
been the case since the copy simulation was dropped by commit:
b9b4b2e55d
Remove simulation pass ( read test ) on move
Include guards need to be unique within GParted code and all included
library header files.
http://en.wikipedia.org/wiki/Include_guard#Difficulties
Use this model for all include guards:
#ifndef GPARTED_FILE_NAME_H
#define GPARTED_FILE_NAME_H
...
#endif /* GPARTED_FILE_NAME_H */
Closes Bug #539297 - Make include guards unique
It was possible to make GParted crash by adding a label, check or new
UUID operation and then applying the operation before the view of
pending operations had finished fully opening. The operation would be
successfully applied but GParted would crash afterwards.
The fault was that Add_Operation() still enabled the Undo and Apply
buttons and processed the GTK event loop before merging the list of
pending operations. Faulty code flow went like this:
activate_*()
Add_Operation()
Add operation to the operations[] vector
Enable Undo and Apply buttons
Refresh_Visual()
Process GTK event loop
Process Apply button callback applying operations,
refreshing display and clearing operations[] vector
Merge operations in the operations[] vector
<< Core dump here >>
Merge_Operations()
Refresh_Visual()
This faulty code flow came about when merging of operations was added
and it didn't appreciate that the operations[] vector could have been
processed and cleared by Add_Operations() before the merge step.
Relevant commit:
b10349ae37
Merge overlapping operations (#438573)
Fragment of code in the label operation case:
2454 void Win_GParted::activate_label_partition()
2455 {
...
2472 Add_Operation( operation ) ;
2473
2474 // Verify if the two operations can be merged
2475 for ( unsigned int t = 0 ; t < operations .size() - 1 ; t++ )
2476 {
2477 if ( operations[ t ] ->type == OPERATION_LABEL_PARTITION )
2478 {
2479 if ( Merge_Operations( t, operations .size() - 1 ) )
2480 break;
2481 }
2482 }
Commentary in the crashing label operation case:
2472 The pending operation was already applied when Add_Operation()
returned resulting in the operations[] vector being cleared
setting its size to 0.
2475 The return type of operations.size() is an unsigned integral, so
the upper limit of the for loop is t < 0UL - 1. Assuming a
32-bit machine that's t < 4294967295.
2477 operations[] vector is access from out of bounds offset 0
upwards until unallocated memory is accessed resulting in a core
dump.
Fix this by not enabling the Undo and Apply buttons and processing the
GTK event loop until after merging of operations has been performed.
Fixed code flow goes like this:
activate_*()
Add_Operation()
Add operation to the operations[] vector
Merge operations in the operations[] vector
Merge_Operations()
show_operationslist()
Enable Undo and Apply buttons
Refresh_Visual()
Process GTK event loop
Process Apply button callback applying operations,
refreshing display and clearing operations[] vector
Not allowing the operations list to be process until after the merge
step is the be correct ordering. This also prevents the new operation
from flashing up in the operations list and then immediately
disappearing if merged. In the case of adding the first operation,
delaying enabling the Undo and Apply buttons is enough as the buttons
were previously disabled preventing the operation being applied before
the merge. In the case of adding further operations, processing of the
GTK event loop must also be delayed until after the merge to prevent the
operations being applied before the merge. Although that window of
opportunity would only be microseconds.
Bug #699452 - Crash when applying operations before pending operations
fully displayed
Mlabel sometimes writes uninitialised memory at the end of the label.
This causes mlabel, and therefore GParted, to display extra junk at the
end of the label. Depending on the bytes written GParted may also show
the following error on stdout:
(gpartedbin:18116): glibmm-CRITICAL **:
unhandled exception (type Glib::Error) in signal handler:
domain: g_convert_error
code : 1
what : Invalid byte sequence in conversion input
This is caused by a bug in mlabel, believed fixed in mtools 4.0.14.
Effects at least Fedora 14, RHEL/CentOS 6.x and Debian 6. (Use label
"1234567890" on Debian 6 to reproduce). Reproduction steps:
# mkdosfs -F16 /dev/sda7
mkdosfs 3.0.9 (31 Jan 2010)
# export MTOOLS_SKIP_CHECK=1
# mlabel ::123456 -i /dev/sda7
# mlabel -s :: -i /dev/sda7
Volume label is 123456~1t
It is not possible to detect which characters are junk so they can't be
trimmed. Instead just space pad labels so that at least newly written
labels aren't effected. (Fat labels are space padded on the disk by
definition anyway).
Bug #700228 - FAT16/32 labels are sometimes shown corrupted
There was virtually no difference between the separate modules for fat16
and fat32. Remove module fat32 and patch fat16 to serve both file
system subtypes. This is equivalent to what was previously done for
ext[234] by commit:
38dc55d49c
Combine duplicate code for ext[234]
Rename the libsigc++ signals to signal_update and signal_eof to match
the naming used for signals in GParted.
fgrep 'sigc::signal' include/*.h
Also explicitly use the emit() method rather than using the object
operator(). This again is to match the convention in GParted and make
it more obvious what is happening.
fgrep '.emit(' include/*.h
The previous commit missed one glibmm GSource wrapper in the form of the
io watch for the PipeCapture class. Convert this one to use glib
directly as well.
Bug #697727 - Segfault in livecd Gparted v 0.15.0-3 when copying
partition
The glibmm GSource wrappers have a bug where they do not do
reference counting properly, and have a race condition where
the background thread can try to touch the source after the
main thread has already processed and destroyed it. This
results in writes to freed memory and sometimes this causes
crashes or other erratic behavior. Avoid using the glibmm
wrappers and use glib directly. See bug #561885 for details
of the glibmm bug.
Bug #697727 - Segfault in livecd Gparted v 0.15.0-3 when copying partition
These functions in GParted_Core:
open_device()
open_device_and_disk()
close_disk()
close_device_and_disk()
call the following functions in the libparted API:
ped_device_get()
ped_disk_new()
ped_disk_destroy()
ped_device_destroy()
which don't open or close anything. Instead they allocate and
deallocate PedDevice and PedDisk memory structures which describe block
devices and partition tables respectively.
Rename functions:
open_device_and_disk() -> get_device_and_disk()
close_device_and_disk() -> destroy_device_and_disk()
and merge open_device() and open_device() as each only wrapped one
libparted function and was only called from a single place.
The wipefs command has the following significant limitations which were
worked around in previous commits:
1) Wasn't available in the earliest distributions supported by GParted;
2) Had to be called 3 times to erase vfat (fat16/32) signatures in all
but the most recent versions.
This meant we had all the code to clear file system signatures without
using the wipefs command as well as extra complexity of using wipefs
too. So just remove use of the wipefs command.
Bug #688882 - Improve clearing of file system signatures
Before util-linux 2.21.0, released Feb 2012, wipefs only cleared one of
the three vfat (fat16/fat32) signatures it can be detected by each time
wipefs was run. Also if a nilfs2 file system was created before all
three signatures were cleared the partition was still recognised as a
vfat file system, albeit a corrupted one, rather than as a nilfs2 file
system.
Old wipefs clearing vfat signatures:
# wipefs --version
wipefs from util-linux 2.20.1
# wipefs -a /dev/sda7
8 bytes were erased at offset 0x52 (vfat)
they were: 46 41 54 33 32 20 20 20
# wipefs -a /dev/sda7
1 bytes were erased at offset 0x0 (vfat)
they were: eb
# wipefs -a /dev/sda7
2 bytes were erased at offset 0x1fe (vfat)
they were: 55 aa
New wipefs clearing vfat signatures:
# wipefs --version
wipefs from util-linux 2.21.2
# wipefs -a /dev/sda12
8 bytes were erased at offset 0x00000052 (vfat): 46 41 54 33 32 20 20 20
1 bytes were erased at offset 0x00000000 (vfat): eb
2 bytes were erased at offset 0x000001fe (vfat): 55 aa
Workaround by calling "wipefs -a" three times if the output indicated
only one vfat signature was cleared.
Bug #688882 - Improve clearing of file system signatures
Add "cleared" to the bottom of list of file system formats available in
the Create new Partition dialog and in the Format to --> (file system
list) menu. This clears existing file system signatures in the newly
created partitions and existing partitions respectively.
Bug #688882 - Improve clearing of file system signatures
Move some code into new create_format_menu_add_item() sub-function which
adds one file system entry to the Partition --> Format to -->
(file system list) menu.
Bug #688882 - Improve clearing of file system signatures
Previously the function erase_filesystem_signatures() was used to clear
file system signatures when a new partition was created and when an
existing partition was formatted with a file system. However this was
only available with libparted <= 2.4 and then only for the file systems
which libparted supports.
Having multiple different file system signatures on a partition leads to
misidentification of file system. For example creating a nilfs2 over
the top of a fat32 file system is detected as a fat32, not nilfs2. This
shows that old file system signatures must be cleared before a new file
system is created.
Fix by always using "wipefs -a /dev/PARTITION" command to clear all old
file system signatures rather than libparted API calls. Failure from
wipefs is only considered a warning so doesn't fail the file system
creation. (This doesn't yet fully meet the "MUST be cleared"
requirement above. Will be fully met later in this patchset). Output
from the wipefs command is displayed as a new sub-step which looks like
this:
v Format /dev/sda7 as xfs 00:00:05
> calibrate /dev/sda14 00:00:01
v clear old file system signatures in /dev/sda7 00:00:01 [NEW]
> wipefs -a /dev/sda7 [NEW]
> set partition type on /dev/sda7 00:00:02
v create new xfs file system 00:00:01
> mkfs.xfs -f -L "" /dev/sda7
Also signatures are only cleared immediately before a new file system is
written and not when an unformatted partition is created. This allows
recovery from accidental partition deletion by re-creating the deleted
partition as unformatted.
Bug #688882 - Improve clearing of file system signatures
Only supports detection and creation of f2fs file systems. Requires
f2fs-tools and a blkid with f2fs support, util-linux > 2.22.2.
f2fs-tools v1.1.0 only supports file system creation.
Currently requires util-linux directly from the git repository as f2fs
support was only committed on 5 Feb 2013 and it has not yet been
released.
Closes Bug #695396 - Please apply f2fs patch
Many filesystems do not implement some of their methods, but had to provide
dummy implementations. Remove all of the dummy implementations and instead
just provide one in the base FileSystem class.
The details view refused to use additional space, even after the window was
expanded, instead continuing to use the scrollbars. Now resizing the
window will be allowed regardless of the state of the details expander, and
the details view will expand to use the extra space. Also request enough
initial width to not need a horizontal scrollbar.
Closes:
Bug 602635 - list of tasks in apply dialog does not expand to the available
vertical space
Bug 662722 - Increase default width of "applying..." dialog to include the
"Details" status icons
There were separate modules for ext3 and ext4 even though there
were virtually no differences with ext2. Remove the duplicate
modules and patch ext2 to serve as a common reference for all
three sub types.
Interested operations can now connect a signal to their OperationDetail
to be notified of a cancelation request. The internal copy/move code
will now cleanly stop on cancelation, allowing the partition to be
rolled back to its previous state. This makes canceling a move
perfectly safe.
After clicking cancel, the button changes to "Force Cancel" and is
disabled for 5 seconds. Operations that are safe to cancel will do so
and those that are not will continue to run. Clicking force cancel
asks operations to cancel, even if doing so is unsafe. For the
internal copy/move algorithm, canceling is always safe because an
error results in a rollback operation. Canceling the rollback is
unsafe. For external commands, filesystem modules may indicate
that the command is safe to cancel or not. Canceled commands will
be terminated with SIGINT.
As a result of the new safe cancel vs force cancel distinction, the
scary warning about cancl causing corruption has been moved to
after clicking the force cancel button.
Part of Bug #601239 - Please allow 'Cancel after current operation'
Have the copy code create a background thread to do the actual copying so
that it won't block the main loop.
Part of Bug 685740 - Refactor to use asynchronous command execution
Win_Gparted and Dialog_Progress were creating threads to perform most
functions in the background. Most of the time, the only reason the
threads blocked was to execute an external command. The external command
execution has been changed to spawn the command asynchronously and wait
for completion with a nested main loop. While waiting for completion,
the pipe output is captured via events. In the future, this will allow
for it to be parsed in real time to obtain progress information.
Those tasks in GParted_Core that still block now spawn a background thread
and wait for it to complete with a nested main loop to avoid hanging the
gui.
Part of Bug #685740 - Refactor to use asynchronous command execution
Dialog_Progress was using pthread_create() so that it could later
pthread_cancel() the thread. pthread_cancel() is wildly unsafe and full
of errors. Changed to use Glib's threads like the rest, and only cancel
between operations. Because it can take some time to cancel, disable
the cancel button once it has been clicked once.
Bug 601239 - Please allow 'Cancel after current operation'
Win_Gparted and Dialog_Progress were looping on Gtk::Main::events_pending()
and iteration() with usleeps in between. Use a full mainloop instead and
a proper timeout to trigger pulsebar updates instead of usleeps.
Part of Bug 685740 - Refactor to use asynchronous command execution
No longer need to trim fat16, fat32 and xfs labels as all labels are
limited to their maximum lengths during entry.
Bug #689318 - filesystem type specific support for partition name
maximum length
Active Linux software RAID devices are detected in the
Proc_Partitions_Info method. Hence the SWRaid method is no longer
required.
Removal of the SWRaid method fixes the problem with the error message:
Could not stat device /dev/md/0 - No such file or directory
This fixes the problem because we no longer use "mdadm --examine
--scan" in an attempt to detect Linux software RAID devices. The
mdadm command was returning device names such as /dev/md/0, which are
incorrect for GParted.
NOTE: With this change, GParted no longer requires the mdadm command
to detect Linux software RAID devices.
Closes Bug #678379 - Could not stat device /dev/md/0 - No such file or
directory
They were used like global variables. Now they are moved to the
functions that actually use them to make clearer how the data flow is.
Bug #683149 - Cleanup(?): Remove lp_device and lp_disk from GParted_Core
GParted doesn't notice when a file system label is changed to blank.
GParted first calls the file system specific read_label() method. When
the label is blank read_label() correctly sets partition.label to the
zero length string. Second GParted_Core::set_device_partitions() treats
the zero length string to mean that the label is unset and calls
FS_Info::get_label() to retrieve it from the cache of blkid output.
Blkid also doesn't notice when the file system label has been changed to
blank so reports the previous label. Hence GParted displays the
previous file system label.
Fix by making label a private member variable of the class Partition and
providing access methods set_label(), get_label() and label_known()
which track whether the label has been set or not. This only fixes the
fault for file systems which use file system specific commands to read
the label and when these tools are installed. Otherwise GParted uses,
or has to fall back on using, the buggy blkid command to read the file
system label.
NOTE:
Many of the file system specific read_label() methods use a tool which
outputs more than just the label and use Utils::regexp_label() to match
leading text and the label itself. If the surrounding text changes or
disappears altogether to indicated a blank label, regexp_label() doesn't
match anything and returns the zero length string. This is exactly
what is required and is passed to set_label() to set the label to blank.
Bug 685656 - GParted doesn't notice when file system label is changed to
blank
A user had a 190 MiB partition containing an old ext2 file system. When
unmounted it was reported as filling the partition, but when mounted it
was reported as having 6% unallocated space. The file system's inode
tables were approximately twice the size of those created by default
with the current mkfs.ext2 defaults.
To create an equivalent file system in a 190 MiB partition:
mkfs.ext2 -N 97344 /dev/sda15
It turns out that for ext2, ext3 and ext4 file systems what was
described as intrinsic unallocated space during the development of
Bug #499202 is actually file system overhead. When mounted the ext2/3/4
kernel code reports the size of the file system after subtracting the
overhead. Overhead is made up of superblock backups, group descriptors,
allocation bitmaps and largest of all inode tables. E2fsprogs tools
don't subtract this overhead when reporting the file system size.
References:
* The Second Extended File System, Internal Layout, by Dave Poirier
http://www.nongnu.org/ext2-doc/ext2.html
* Linux ext2_statfs() function
http://lxr.linux.no/#linux+v3.5.3/fs/ext2/super.c#L1311
Call the file system specific method for reading the usage of ext2, ext3
and ext4 file systems while mounted. Make it read the file system size
from the on disk superblock to avoid subtraction of overhead and use the
statvfs() system call to return an up to date free space figure.
Bug #683255 - ext2: statvfs differs from dumpe2fs (x MB unallocated
space within the partition)
Each file system class can now choose how the size and free space of the
file system is determined when it is mounted.
.fs.online_read = FS::NONE (default)
Do nothing. Don't get the file system size and free space.
.fs.online_read = FS::GPARTED
Use internal GParted method which calls statvfs() system call on
the mounted file system.
.fs.online_read = FS::EXTERNAL
Call the file system's member function set_used_sectors(). This
is the same function as called when the file system is not
mounted. It can determine if the file system is mounted or not
by testing partition.busy and acting accordingly.
This means that determining the size and free space of active LVM2
Physical Volumes is no longer a special case. Instead the lvm2_pv class
just elects to have its set_used_sectors() method called for both the
active and deactive cases.
Bug #683255 - ext2: statvfs differs from dumpe2fs (x MB unallocated
space within the partition)
On Fedora up to and including Fedora 16 and Red Hat and CentOS up to the
current 6.3 release the UUID of an unmounted reiserfs file system is
displayed as "<no" and a GTK markup warning is written to the terminal.
This was because the reiserfs-utils package isn't linked with libuuid
support so reiserfs file systems were created with a Nil UUID (all
zeros). To read the UUID GParted first tries to retrieve the UUID from
the blkid command output via the FS_Info cache. Secondly it tries the
reiserfs file system specific read_uuid() method which uses the first
space separated word following the text "UUID:", hence it gets "<no".
# debugreiserfs /dev/sda15 2> /dev/null | grep UUID
UUID: <no libuuid installed>
In September 2012 Red Hat bug 660285 "reiserfstune compiled without UUID
support" was fixed for Fedora 16 and later releases. On Fedora with
this fix applied GParted will display the Nil UUID (all zeros) for a
previously created reiserfs file system rather than suppressing it.
Only accept valid, none Nil UUIDs in the reiserfs file system specific
read_uuid() method.
Bug #684115 - Reiserfs UUID reading issues on Fedora and CentOS
As LVM2 Physical Volumes can't be resized when they are members of
exported Volume Groups add a warning message to explain this fact.
Display the message as a partition specific warning and as additional
text when growing the file system to fill the partition is skipped for
the check operation and when pasting into an existing larger partition.
Bug #670171 - Add LVM PV read-write support
When an inactive LVM2 Volume Group is exported it makes it unknown to
the local system, ready for moving the member Physical Volumes to
another system, where the VG can be imported and used. In this state a
PV can't be resized.
# lvm pvresize /dev/sda10
Volume group Test-VG1 is exported
Unable to read volume group "Test-VG1".
0 physical volume(s) resized / 1 physical volume(s) not resized
# echo $?
5
Fix this by preventing resizing of such a PV. This has been coded in a
generic way using new function filesystem_resize_disallowed() to
determine whether a file system is allowed to be resized or not. For
a file system which can be resized, but is currently not allowed to be
resized, the behaviour is as follows:
1) Pasting into unallocated space is limited to creating a new
partition which is the same size as the copied partition.
2) Resizing the partition is disallowed, only moving the partition is
allowed.
3) Pasting into an existing partition will only copy the file system.
If the destination partition is larger a warning will report that
growing the file system is not currently allowed.
4) Checking a partition will also report a warning that growing the
file system is not currently allowed.
This is exactly the same behaviour as for a file system which does not
implement resizing, except for a different warning message.
Bug #670171 - Add LVM PV read-write support
Create common cache search and index functions get_attr_by_name() and
get_attr_by_row() as the existing ones, get_pv_attr_by_*() and
get_vg_attr_by_*(), only differ from each other by the string vector
they use.
If an LVM2 Volume Group has two or more missing Physical Volumes, the VG
is displayed as only having one "unknown device" because
get_vg_members() only adds unique names to the list of members.
# lvm pvcreate /dev/sda11 /dev/sda12 /dev/sda13
# lvm vgcreate Test-VG1 /dev/sda11 /dev/sda12 /dev/sda13
# wipefs -a /dev/sda12
# wipefs -a /dev/sda13
View partition information in GParted
The simplest fix would be to include the PV's UUID in the cache of LVM2
information and add PV names based on unique UUIDs being a member of the
relevant VG. Unfortunately "lvm pvs" seems to have a bug when
displaying Logical Volume attributes, and there are two or more missing
PVs, which causes one of the PVs to be displayed multiple times, rather
than displaying each PV once.
Without LV attributes, every PV is listed:
# lvm pvs --nosuffix --separator , --units b -o pv_name,pv_uuid,vg_name,vg_attr 2> /dev/null
PV,PV UUID,VG,Attr
/dev/sda11,pJ3R51-AOPP-rKlr-CKCT-nfPS-G5FP-B5Vyjm,Test-VG1,wz-pn-
unknown device,Y72oSm-uBcE-ktZL-OIFA-Q129-Uv1B-x5IsrA,Test-VG1,wz-pn-
unknown device,1ESORF-7wlR-0tnO-fy2z-nOL1-MrnJ-2O5yjK,Test-VG1,wz-pn-
With LV attributes, one missing PV is repeated:
# lvm pvs --nosuffix --separator , --units b -o pv_name,pv_uuid,vg_name,vg_attr,lv_name,lv_attr 2> /dev/null
PV,PV UUID,VG,Attr,LV,Attr
/dev/sda11,pJ3R51-AOPP-rKlr-CKCT-nfPS-G5FP-B5Vyjm,Test-VG1,wz-pn-,,
unknown device,Y72oSm-uBcE-ktZL-OIFA-Q129-Uv1B-x5IsrA,Test-VG1,wz-pn-,,
unknown device,Y72oSm-uBcE-ktZL-OIFA-Q129-Uv1B-x5IsrA,Test-VG1,wz-pn-,,
Also "lvm vgs" and "lvm lvs" don't display anything when including both
VG and LV attributes.
Instead query the LVM2 information in two separate commands, one
querying PV attributes and one querying VG and LV attributes, saving the
results in lvm_pv_cache and lvm_vg_cache respectively.
Bug #670171 - Add LVM PV read-write support
Add const qualifier to get_pv_attr_by_path() and get_pv_attr_by_row() as
they only access member variables read-only.
Make lvm2_pv_attr_to_num() a static member function as it doesn't access
any member variables.
Rename functions and a variable to use a generic term for the menu item
which changes the busy state of partitions now that it also activates
and deactivates LVM2 Physical Volumes as well as mounting and unmounting
file systems and enables and disables swap partitions.
When attempting to delete a non-empty LVM2 Physical Volume (one which is
still a member of a Volume Group) display a warning dialog which
includes the VG name and a list of the PV members to allow the user to
make an informed choice whether to go ahead and perform the deletion or
cancel to the operation. This dialog is displayed when a partition
containing a PV is being deleted or being overwritten by being
reformatted or pasted into.
Bug #670171 - Add LVM PV read-write support
This commit only adds a remove() method to every file system and an
optional call to it in the relevant operations. All remove() methods
are no operations and not enabled.
The remove() method provides explicit controlled removal of a file
system before the partition is deleted or overwritten by being formatted
or pasted into. When implemented, it appears as an extra step in the
relevant operation. The file system specific remove() method is
explicitly allowed to fail and stop the operations currently being
applied.
This is different to the existing erase_filesystem_signatures() which
wipes any previous file system signatures immediately before a new file
system is written to ensure there is no possibility of the partition
containing two or more different file system signatures. It never fails
or reports anything to the user.
NOTE:
Most file systems should NOT implement a remove() method as it will
prevent recovery from accidental partition deletion.
Bug #670171 - Add LVM PV read-write support
In the Partition menu enable activation / deactivation of the LVM2
Volume Group of which the Physical Volume is a member.
Bug #670171 - Add LVM PV read-write support
Steps to reproduce:
1) Open any of these dialogs: Create New Partition, Resize/Move or
Paste;
2) Update any of the following numeric entry fields to a different value
using the keyboard: Free space preceding, New size or Free space
following;
3) Press [Esc] key;
Gparted crashes.
What is happening is that the [Esc] key is leading to the dialog being
closed and calling the ~Dialog_Base_Partition() destructor. However
after this the GTK widget is calling the on_spinbutton_value_change()
registered callbacks for the change to the other two values, on the now
just deleted object.
Fix by disconnecting the change notification callbacks in the
destructor.
Closes bug #682658 - GParted crash by pressing Esc in dialogs with
number entry
The member functions btrfs_size_to_num(), btrfs_size_max_delta() and
btrfs_size_to_gdouble() don't access any member variables. Therefore
they don't need the const qualifier allowing them to be called when the
btrfs object is const for read-only access to member variables, but
instead need to be static member functions with no access to member
variables.
Now that every call to calc_usage_triple() just passes usage figures
returned by get_sectors_*(), remove those parameters, call
get_sectors_*() internally and rename to get_usage_triple().
Stop using fraction_unallocated and fraction_used member variables of
the DrawingAreaVisualDisk class as intermediate storage of partition
usage fractions. Instead get the figures straight from the partition
class and use the new calc_usage_triple() to directly set pixels widths
for the partition usage graphic.
For specific partition usage values the right hand border of the
partition graphic in the Information dialog would be displayed as grey
rather than the color assigned to the partition.
Steps to reproduce fault:
Create 1024 MiB partition
# lvm pvcreate /dev/sda12
# lvm vgcreate GParted-VG1 /dev/sda12
View partition information
Fragment from Dialog_Partition_Info::init_drawingarea():
139 else if ( partition .sector_usage_known() )
140 {
141 used = Utils::round( ( 400 - BORDER *2 ) / ( dlength / partition .get_sectors_used() ) ) ;
142 unused = Utils::round( ( 400 - BORDER *2 ) / ( dlength / partition .get_sectors_unused() ) ) ;
143 unallocated = 400 - BORDER *2 - used - unused ;
144 }
For this issue the above values are both exactly x.5 and both round
upwards, resulting in unallocated being -1.
used = round((400 - 8*2)/(2097152.0/8192)) = round(1.5)
unused = round((400 - 8*2)/(2097152.0/2088960)) = round(382.5)
unallocated = 400 - 8*2 - 2 - 383 = -1
The simple fix would be to use floor() instead of round() in the
calculation of either used or unused. The same fix would also need to
be applied in Display_Info() for the calculation of the percentage
figures. Unfortunately this simple fix can lead to odd figures when the
used or unused is close to zero and floor() or ceil() is effectively
applied rather than round(). For example:
Size: 227.23 GiB
Used: 28.00 KiB ( 1% )
Unused: 180.00 GiB ( 79% )
Unallocated: 47.23 GiB ( 20% )
Used figure of 28 KiB in 227 GiB partition should be rounded to 0% but
wasn't.
Write Partition::calc_usage_triple() which calculates the "best" figures
by rounding the smaller two figures and subtracts them from the desired
total for the largest figure. Apply to the calculation of the partition
usage percentage figures in the Information dialog and the partition
usage graphic in the same dialog and the main window.
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
Most file systems report intrinsic unallocated space using the statvfs()
system call when mounted, but not using their own tools. They are:
ext2/3/4, fat16/32, hfs, nilfs2, reiserfs and xfs. Showing either a
little or no unallocated space, depending on whether a file system is
mounted or not, could be confusing to the user.
When all file systems are created filling their partitions the unused
figure reported by statvfs() and their own tools are the same or very
close. Also the used plus unallocated figure from statvfs() agrees with
the used figure from their own tools.
For all file systems don't display intrinsic unallocated space (that
below the threshold of 2 to 5%), instead include it as used space. As
soon as the amount of unallocated space becomes significant display it
everywhere and also trigger the warning.
For display purposes always use the new Partition methods:
get_sectors_used(), get_sectors_unused(), and get_sectors_unallocated().
When calculating new usage figures during Paste and Resize/Move
operations directly access sectors_used, sectors_unused and
sectors_unallocated members.
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
A number of file systems report intrinsic unallocated space even when
they are created filling the partition. As reported using their own
specific tools, they are: jfs, lvm2 pv and ntfs. Therefore when
resizing a partition estimate its minimum size to be used sectors plus
any unallocated sectors up to the significant amount.
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
The btrfs programs only provide approximations of file system sizes
because they display figures using binary prefix multipliers to two
decimal places of precision. E.g. 2.00GB. For partition sizes where
the contained file system size rounds upwards, GParted will fail to read
the file system usage and report a warning because the file system will
appear to be larger than the partition.
For example, create a 2047 MiB partition containing a btrfs file system
and display its size.
# btrfs filesystem show
Label: none uuid: 92535375-5e76-4a70-896a-8d796a577993
Total devices 1 FS bytes used 28.00KB
devid 1 size 2.00GB used 240.62MB path /dev/sda12
The file system size appears to be 2048 MiB, but that is larger than the
partition, hence the issue GParted has. (Actually uses the btrfs devid
size which is the size of the btrfs file system within the partition in
question).
This issue is new with the fix for Bug #499202 because it queries the
file system sizes for the first time. The same issue could
theoretically occur previously, but with the used figure (FS bytes
used). This would have been virtually impossible to trigger because
btrfs file system would have to have been greater than 99% full, but
btrfs has been notorious for early reporting of file system full.
The fix is that if a btrfs file system size appears larger than the
partition size, but the minimum possible size which could have been
rounded to the reported figure is within the partition size use the
smaller partition size instead. Apply the method to the used figure
too, in case the file system is 100% full. Also if the btrfs file
system size appears smaller than the partition size, but the maximum
possible size which could have been rounded to the reported figure is
within the partition size use the larger partition size instead to avoid
reporting, presumably false, unallocated space. Not applied to file
system used figure.
Bug 499202 - gparted does not see the difference if partition size
differs from filesystem size
When pasting a copied partition into free space or move/resizing a
partition set its space utilisation so that any unallocated space within
the partition is displayed correctly before the operation is applied.
NOTE:
If the file system does not support file system resizing the Paste and
Move/Resize dialogs don't allow resizing the partition so the preview
will always be correct, unlike the case in the previous patch:
Set unallocated space when performing simple operations (#499202)
Also remove the deprecated and no longer used Partition::Set_Unused()
and Partition::set_used() methods.
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
Display the unallocated space within a partition in the main window's
graphical disk representation.
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
Add reporting of the LVM2 Physical Volume size allowing the unallocated
space in the partition to be calculated.
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
Update file system specific implementations to set the size and free
space, thus allowing the unallocated space in the partition to be
calculated, for the following unmounted file systems:
btrfs, ext2, ext3, ext4, fat16, fat32, jfs, nilfs2, ntfs, reiserfs,
reiser4, xfs
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
Display the unallocated space in the graphical partition representation
and numeric figures in the Partition Information dialog.
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
Currently GParted assumes that a file system fills its containing
partition. This is not always true and can occur when resizing is
performed outside of GParted or a resize operation fails. GParted
doesn't display any information about unallocated space to the user
and in most cases it is simply included in used space.
Add partition unallocated space accounting. Make GParted record the
unallocated space for mounted file system and display a warning in the
Partition Information dialog when too much unallocated space is found.
Partition::set_sector_usage( fs_size, fs_unused ), is the new preferred
method of recording file system usage because it allows the unallocated
space in a partition to be calculated. Partition::Set_Unused() and
Partition::set_used() are now deprecated.
NOTES:
1) Set the minimum unallocated space to be 5% before considering it
significant to avoid false reporting. Worst case found was a
mounted xfs file system in a 100MiB partition, which reports as
~4.7% unallocated according to file system size from statvfs().
However, it reports as having no unallocated space using xfs
specific tools.
2) Unallocated space is only a graphical representation for the user.
GParted must still use relevant tools to resize file systems before
shrinking the data and can't assume all unallocated space exists
after the file system at the end of the partition.
Bug #499202 - gparted does not see the difference if partition size
differs from filesystem size
The parted-3.1 release brings back FAT16/FAT32 and HFS/HFS+ file
system resize capabilities in a new libparted fs resize library.
The following operations are again available when GParted is linked
with parted-3.1:
FAT16 - grow and shrink
FAT32 - grow and shrink
HFS - shrink
HFS+ - shrink
Note that there is a difference in how move actions are handled for
FAT16/FAT32 file systems based on parted version.
When GParted is linked with parted >= 3.0:
FAT16 - move performed internally by GParted
FAT32 - move performed internally by GParted
When GParted is linked with parted < 3.0:
FAT16 - move performed by libparted
FAT32 - move performed by libparted
Thanks goes to Jim Meyering for restoring these file system resizing
capabilities in Parted 3.1 with a new libparted fs resize library.
Closes Bug #668281 - minimal file-system resize API? (FAT and HFS*
only)
Also update to use LVM terminology, such that a Physical Volume is
referred to as a member of a Volume Group. Status of an LVM2 PV is now
displayed using one of the following messages:
Not active (Not a member of any volume group)
VGNAME not active
VGNAME not active and exported
VGNAME active
Bug #160787 - lvm support
GParted would crash if there were any embeded spaces in the output from
the command used to query LVM2 PVs. There aren't normally any embeded
spaces, but they can occur in certain degrated situations. For example
if one of the PVs in a VG spanning two PVs is lost the PV is displayed
as "unknown device" rather than its actual device name:
# lvm pvs --nosuffix --units b --separator , -o pv_name,pv_free,vg_name,lv_name,lv_attr
Couldn't find device with uuid DMEi8r-9Vvy-w0Ok-CSSn-oLmY-YrY3-1PBznz.
PV,PFree,VG,LV,Attr
/dev/sda11,2143289344,GParted-VG1,,
unknown device,1619001344,GParted-VG1,lvol0,-wi---
unknown device,1619001344,GParted-VG1,,
This was loaded into the cache as:
["/dev/sda11,2143289344,GParted-VG1,,",
"unknown",
"device,1619001344,GParted-VG1,lvol0,-wi---",
"unknown",
"device,1619001344,GParted-VG1,,"]
The crash would happen when trying to access the VG name or LV flags on
a line without enough comma separated fields.
Improve parsing of the output from "lvm pvs" so that lines are not split
on embeded spaces. Don't crash on lines without without enough comma
separated fields.
Bug #160787 - lvm support
Previously any errors which occurred when running LVM commands used to
load the LVM2_PV_Info cache were simply ignored and the cache wasn't
loaded. This lead to missing information about LVM2 PVs, but the user
had no indication as to why.
Now when any errors occur the command ran and all output is captured.
This is displayed to the user, along with a suitable warning message, in
the Partition Information dialog.
Bug #160787 - lvm support
Create function Utils::kernel_version_at_least() to check that the
current Linux kernel is a particular version or higher.
Update nilfs2 to use this function to determine whether the kernel is
new enough to support file system resizing.
Previously used "dmsetup info" to directly list device-mapper mapping
names in the kernel to identify active Logical Volumes. However GParted
failed to recognise active LVs if the VGNAME contains any hyphens (-).
This is because LVM encodes hyphens as double hyphens in the mapping
name.
To avoid having to duplicate the LVM hyphen encoding in GParted, switch
to using "lvm lvs" to list LVs.
# dmsetup info --columns --noheadings --separator , -o name
GParted_VG1-lvol_00
GParted--VG2-lvol--00
# lvm lvs --noheadings --separator , -o lv_name,vg_name,lv_attr
lvol_00,GParted_VG1,-wi-a-
lvol-00,GParted-VG2,-wi-a-
lvol-01,GParted-VG3,-wi---
.^.
(-) not active, (a) or any other character considered active. Reference
lvs(8).
Bug #160787 - lvm support
As the Mount Point column is being borrowed to display the PV's VGNAME,
also suppress generation of the "Mount on" submenu for LVM2 PVs.
Bug #160787 - lvm support
Previously when GParted was started LVM2_PV_Info cache was loaded twice,
executing LVM2 PV querying commands twice. Firstly when
lvm2_pv::get_filesystem_support() was checking if LVM2 PV support was
available, and secondly when forced by a refresh in
GParted_Core::set_devices().
Implement lazy initialization. Only load the cache when forced by the
above mentioned refresh or having to return a value when the cache is
not yet loaded. Do not initialize the cache when just checking if LVM2
PV support is available.
Bug #160787 - lvm support
Cache results from querying all LVM2 PVs in one go to minimise the
number of times lvm commands are executed. Take inspiration from
caching performed by FS_Info and Proc_Partitions_Info.
Bug #160787 - lvm support
Add minimal support for just reporting the space usage of LVM2 PVs.
Accept libparted / blkid detection of LVM2 PVs first, falling back on
GParted's specific detection code otherwise. Maintain LVM not supported
warning message.
Bug #160787 - lvm support
This is the first step of adding support for just LVM2 Phyiscal Volumes,
a subset of full LVM2 support.
Make it clear that it is only LVM2 PVs being treated like a file system.
Bug #160787 - lvm support
Add the ability to set a new random UUID on file systems that provide
the appropriate tools to perform this action.
Update the help manual to include this new functionality. Also add
reference links to "setting a partition label" and "changing a
partition UUID" in the "copying and pasting a partition" section.
This patch does not include setting the UUID on an NTFS file system.
Bug #667278 - Add support for setting UUID
Bug #608308 - fix documentation - Copying and Pasting a Partition
There is a lot of commonality and code repetition for resizing of file
systems which can only be resized while mounted. Resizing of btrfs, jfs
and xfs all follow the pattern: mkdir, mount, resize, umount and rmdir.
Copying an xfs file system also uses a similar pattern, but for the
source and destination xfs file systems simultaneously.
Add three helper functions to the FileSystem class which implement
common tasks, allowing mounted file system resizing to be implemented
more simply.
Also add a function to the Utils class which checks whether the kernel
supports a file system. It handles the case of non-loaded modules,
which currently leads to reporting the growing of jfs and xfs as
unsupported.
We used to just log libparted exceptions without handling them. This patch
changes the exception handler to display a modal dialog box and return the
chosen action to libparted.
Requires libparted 2.4 or higher, or blkid from utils-linux 2.20 or
higher for nilfs2 file system detection.
Requires nilfs-utils for nilfs2 file system support.
Closes Bug #642842 - nilfs is not detected
When a new operation is added to operations list, check if a merge
is possible depending on the operation type:
OPERATION_RESIZE_MOVE: 2 consecutive "resize" operations on the
same partition
OPERATION_LABEL_PARTITION: 2 "label change" operations (need not be
consecutive) on the same partition
OPERATION_CHECK: 2 "check" operations (need not be
consecutive) on the same partition
OPERATION_FORMAT: 2 consecutive "format" operations on the
same partition
Closes Bug #438573 - Cancel out overlapping actions
Also fix a bug when copying partition using the Partition::Set(...)
method. This method did not initialize "sectors_used" and
"sectors_unused" members.
Some classes contained private attributes which were used only by a single
member function. Such items were moved to the corresponding function implementations
to stress their limited usage scope.
A few unused variables were also deleted.
Signed-off-by: Markus Elfring <elfring@users.sourceforge.net>
The release of (lib)parted 3.0 includes a change to the Application
Programing Interface - API. Most importantly, libparted 3.0 removes
many file system specific function calls, and hence the capabilities
provided by these functions. In order for GParted to compile and link
with libparted 3.0, this libparted functionality is lost.
Specifically, the functionality that is lost when GParted is compiled
and linked with libparted 3.0 is as follows:
- Loss of ability to grow and shrink FAT16 and FAT32 file systems
- Loss of ability to shrink HFS and HFS+ file systems
- Loss of ability to determine used and unused sectors in HFS and
HFS+ file systems
- Loss of ability to erase file system signatures on partition
create and format
It is hoped that other free software projects will include some or all
of the above lost functionality, which can then be added back to
GParted.
This commit includes a change in how FAT16 and FAT32 file systems are
moved. Specifically the move is now performed internally by GParted
when linked with libparted 3.0. The move functionality is provided by
libparted for prior libparted versions (e.g. less than 3.0).
This is the final enhancement in a series of commits that enable
GParted to compile with libparted version 3.0.
Closes Bug #651559 - Doesn't compile against parted 3.0
Usage of the kpartx package to create partition names has been
completely removed. Hence kpartx is no longer even an optionally used
package by gparted.
This change is related to the following bug report:
Ubuntu launchpad bug 719129 - [Natty] Gparted duplicates dmraid
partition devices
https://bugs.launchpad.net/ubuntu/+source/gparted/+bug/719129
The reason for refactoring is to simplify the large GParted_Core
class, to help minimize disk reads, and to group the logic for
processing the file /proc/partitions into a single logical class.
This reason for refactoring is to simplify the large GParted_Core
class, to help minimize disk reads, and to group the logic for
processing the file /proc/partitions into a single logical class.
This adds initial handlers for Btrfs; only .create, .check and
.read_label are done for now, via external btrfs-tools.
Other methods are still only stubs.
Newer versions (dmraid-1.0.0-rc16?) of dmraid default to always
creating partition names by inserting the letter 'p' between the
device name and the partition number. Since this is not
consistent with older versions of dmraid, add extra logic to
ensure that newer versions of dmraid do not insert this extra
letter 'p'.
Rename method get_udev_name to get_udev_dm_name and enhance to
retrieve the property DM_NAME.
Handle situation where parted, and hence libparted, has been
configured with --disable-device-mapper. In this situation on
some distros the device name could be /dev/dm-0. This results in
invalid partition names such as /dev/dm-0p1. Add logic to decode
the actual /dev/mapper name.
Make align to MiB the default setting instead of align to cylinder.
Migrate logic for alignment to cylinder into its own method
snap_to_cylinder, and place common logic in snap_to_alignment.
Add alignment checks for situations where space is needed for Master
Boot Record or Extended Boot Record.
Adjust ranges on spin buttons according to required boot record space.
Copy fix for off by one sector (#596552) from
Dialog_Partition_New::Get_New_Partition to
Dialog_Base_Partition::Get_New_Partition
Enhance resize / move logic for checking locations of nearby logical
partitions to not depend on the partition ordering.
Note: This commit does not include limiting graphic movement according
to required boot record space.
Also add signal handler to alignment menu to update file system
minimum size.
This enhancement is to prepare for adding a third alignment
option to align to MiB.
With the removal of the 512 byte constants, such as MEBIBYTE, it
was possible to rename the _FACTOR constants back to BYTE
constants. The _FACTOR constants, such as MEBI_FACTOR, were a
temporary measure to help in the transition to support devices
with sector sizes > 512 bytes.
The device sector size is needed in all calculations that convert
between sectors and bytes. The device sector_size is included in
the partition object because this object is used to contain
operation information in addition to actual partitions and
unallocated space. A second option was considered to pass the
device object to many methods, but this was considered a much
larger task that might not provide significant gains in
maintainability.
According to parted documentation, only "msdos" and "dvh" disk
types (or partition table types) support extended partitions.
All other disk types support primary partitions only.
Remove commented code and boolean use-C-lang parameter for
Utils::num_to_str() method because this bug was fixed in
gcc-4.0.3. The GNU gcc compiler versions 4 and up are now
commonly in use. Also due to previous partial commenting and
removal of the code, the code was non-functional
Thanks goes to Jan Claeys for pointing out this clean up
opportunity.
Restore copyright entries by original author to those of his last
known repository commit titled "released gparted-0.3.4 on
LarryT's request." on Feb 25, 2007.
Add my own copyright entries for files in which I changed source
code. Files in which I only made spelling changes do not have my
copyright entry added.
Auto detection of Linux software RAID devices was lost in GParted
0.3.8. This was because device scanning by the libparted device
call ped_device_probe_all() was replaced with custom code within
GParted to scan /proc/partitions for devices.
The reason the libparted call was replaced was due to a long
scanning problem with ped_device_probe_all(), a non-existent
physical floppy device, and a BIOS setting indicating a floppy
drive existed. See bug #351753:
https://bugzilla.gnome.org/show_bug.cgi?id=351753
Improve the feedback to the user when creating or pasting a
partition on a device with no partition table found.
Prior to this enhancement if a user tried to create or paste a
partition onto a device with no partition table found, GParted
would present the user with a Create Partition Table dialog.
When creating a new partition this could cause confusion for
users who were trying to format the disk. The user could
mistakenly believe the choice of an MS-DOS file system was being
presented.
Similarly on a paste operation it could be confusing to be
presented with a dialog to create a partition table without any
explanation of why a partition table was suddenly required in the
midst of the paste operation.
Neither the new partition creation, nor the partition paste
actions were performed after the Create Partition Table dialog
was displayed.
It appears that different dmraid versions handle specifying a
single dmraid device differently.
dmraid-1.0.0.rc14 uses a partial name only,
such as "isw" or "isw_cjbdddajhi".
dmriad-1.0.0.rc15 uses a full name only,
such as "isw_cjbdddajhi_Vol0".
To maintain compatibility with the broadest range of dmraid versions,
the ability to specify a single dmraid device is being removed.
Some distros appear to display /dev/dm-# device names with
libparted. Since this fails a pattern match with the dmraid
device name, check with udev to see if a pattern match is
possible with the name returned from udevinfo or udevadm info.
For example:
/dev/mapper/isw_cjbdddajhi_Vol0 is the device name
/dev/dm-0 is a symbolic link pointing to the above device name
Normally, the blkid command will detect the UUID for a file system.
In cases where blkid fails to detect the UUID and the vol_id command
is available, then try using the vol_id command.
- Changed title Features to File System Support.
- Renamed button Refresh to Rescan Support.
- Created expander for legend and added narrative.
- Removed columns detect and read.
svn path=/trunk/; revision=966
* include/Device.h,
include/Dialog_Base_Partition.h,
src/Dialog_Base_Partition.cc: replaced 'long' with 'Sector' to
prefent overflows with really large devices.
* include/Makefile.am,
include/Operation.h,
include/Win_GParted.h,
src/GParted_Core.cc,
src/Makefile.am,
src/Win_GParted.cc,
include/OperationCheck.h (new),
src/OperationCheck.cc (new): added 'check' operation. The
functionality was already there, but it was not possible yet to
activate it from the gui.
* added support for reading volumelabels. Atm we only read ext2/3, but
the infrastructure for adding the other filesystems is in place.
It's simply a matter of finding the right commands and parsing the
output. (see #338528 for more info)
* src/Dialog_Progress.cc: make sure progressfraction stays between 0.0
and 1.0
* include/GParted_Core.h,
src/GParted_Core.cc: implemented rollback in case of failed move of
overlapping filesystems. Together with the readonly test moving
should be quite save now :)
* include/Dialog_Progress.h,
src/Dialog_Progress.cc: Show number of warnings after all operations
are completed. Also urge people to save their details in case of
error.
* include/GParted_Core.h,
src/GParted_Core.cc: declared char * buf global, so it can be
initialized in copy_blocks(). This is a lot more efficient than
initializing it on every copy_block()
* include/Partition.h,
src/Partition.cc: added test_overlap()
* include/GParted_Core.h,
src/GParted_Core.cc: perform a readonly testrun before the actual
move if destination overlaps source.
* include/GParted_Core.h,
src/GParted_Core.cc: update ntfsbootsector after first sector has
changed. This is necessary to let windows boot correctly afterwards.
* src/ntfs.cc: added FIXME
* include/GParted_Core.h,
src/GParted_Core.cc: tried to fix a couple of errors with moving to
the right with overlap (thanks Larry for hunting ;) )
Although everything seems to work well i'm still not sure if
everything is 100% ok.
I guess everything could use some more testing, which is exactly
what i plan to do this weekend :)
* happy 24th birthday Johannes! :^)
* include/GParted_Core.h,
src/GParted_Core.cc: restructured resize_move() to be more robust.
This will hopefully tackle a couple of issues which came up during
the public testing.
* include/Utils.h,
src/Utils.cc: added format_time()
* include/OperationDetail.h,
src/OperationDetail.cc: keep track of elapsed time between
STATUS_EXECUTE and STATUS_[ERROR|SUCCES]
* include/Dialog_Progress.h,
src/Dialog_Progress.cc: show elapsed time in the details per (sub)
process
* src/GParted_Core.cc: use Utils::format_time()
* include/GParted_Core.h,
src/GParted_Core.cc: fixed some issues with combi move+shrink on
fat* and hfs* filesystems.
Also call wait_for_node() from commit() if 'node' was provided.
* include/GParted_Core.h,
src/GParted_Core.cc: created set_progress_info() (i actually planned
on adding some time remaining stuff, but xfiles is waiting ;) )
* include/GParted_Core.h,
src/GParted_Core.cc: did some work on disabling of automounting of
removable drives. The current method is not entirely to my liking
but it seems to work.
* implemented some stuff to find a good blocksize to use for
copy/move. Actually i'm not really happy with it, because probing
seems suboptimal, but it's better than nothing. As soon as i have
some time i should do some research on the subject to find a better
solution.
* include/Win_GParted.h,
src/Win_GParted.cc: construct operations in the activate*()
functions instead of in Add_Operation(). This approach allows for
more customization of operations.
* improved errorhandling a bit. At the initialscan we store
errors/warnings now in a list per partition and show the in the
partitioninfo dialog.
While executing an operation we collect all libparted exceptions in
a list and attach this list to the operationdetails when everything
is done.
* include/FileSystem.h,
include/GParted_Core.h,
src/FileSystem.cc,
src/GParted_Core.cc,
src/ext2.cc,
src/ext3.cc,
src/ntfs.cc,
src/reiserfs.cc: removed cylindersize buffering during resize from
the filesystems. It is not needed anymore now we calculate the new
position before calling this.
Also added some extra progressfeedback in the core
* src/Win_GParted.cc: added FIXME:
* include/GParted_Core.h,
src/GParted_Core.cc,
src/fat32.cc: decoupled libparted partition and filesystemresizing.
This resulted in a much more consistent core. This also affected
several other aspects of resizing/moving in a positive way.
* include/GParted_Core.h,
src/GParted_Core.cc,
src/Win_GParted.cc: perform some checks before adding a new
operation to the list.
* src/Partition.cc: made get_length() a bit safer
* include/Dialog_Progress.h,
include/Operation.h,
src/Dialog_Progress.cc,
src/GParted_Core.cc: show warning in progressfeedback if a certain
action is n/a. Of course we only allow these actions if the results
are non-lethal.
* src/Win_GParted.cc,
include/GParted_Core.h,
src/GParted_Core.cc: implemented snap to cylinder algorithm.
Although the algorithm is very simple, it seems to work perfectly.
However, some additional testing is required.
* include/GParted_Core.h,
src/GParted_Core.cc,
src/ext2.cc: added movesupport, atm in experimental state and needs
lots of cleaning. only enabled for ext2, but should work for all
filesystems.
* src/DialogFeatures.cc: added alternating rowcolours (see #342682)
* include/Dialog_Partition_Copy.h,
include/GParted_Core.h,
include/OperationCopy.h,
include/Win_GParted.h,
src/Dialog_Partition_Copy.cc,
src/GParted_Core.cc,
src/OperationCopy.cc,
src/Win_GParted.cc: made blocksize settable by the user.
* Use ped_device_read and ped_device_write instead of 'dd' to copy
filesystems.
Modified progressdetails to provide more detailed feedback about a
process.
Basicly these were all changes to the infrastructure to make the
incorporation of the 'move-code' a bit easier.
( sorry, not in the mood to list all affected files ;)