GParted_Core::FILESYSTEMS and ::FILESYSTEM_MAP and the methods that
query and manipulate them are self-contained. Therefore move them into
a separate SupportedFileSystems module.
Also having a single class maintaining all FileSystem interface objects
will make testing all the file system types much easier as there will be
no need to duplicate this functionality in the test.
Closes!49 - Add file system interface tests
Gtk::Menu_Helpers::Element class and subclasses help in Gtk::MenuItem
widgets and also automate tasks like registering keyboard accelerators
when parented to a top-level window [1][2].
Gtk::Menu_Helpers::Element class and subclasses were removed in Gtkmm3
[3]. Provide compatible implementations under the namespace
GParted::Menu_Helpers.
References:
[1] gtkmm: Gtk::Menu_Helpers Namespace Reference
https://developer.gnome.org/gtkmm/2.24/namespaceGtk_1_1Menu__Helpers.html
[2] gtkmm: Gtk::Menu_Helpers::Element Class Reference
https://developer.gnome.org/gtkmm/2.24/classGtk_1_1Menu__Helpers_1_1Element.html
[3] Gtkmm 3 commit "MenuShell: Remove items()." removed the code
c8e47b0db5Closes#7 - Port to Gtk3
There is no prospect of there being ufs-tools on Linux. The was a
project which did release ufs-tools version 0.1 in 2004, but has been
inactive since then.
http://ufs-linux.sourceforge.net/
Copying and moving is now implemented for file systems in the basic
supported category. Also mounting and unmounting of unsupported file
system and reporting their usage while mounted has been added. This is
all the support that GParted has ever implemented for UFS. Therefore
re-assign UFS as a basic supported file system as it looses no
functionality.
Closes!13 - Support copying and moving of unsupported partition content
Util-linux package, at least as far back as version 2.23.2 as found on
CentOS 7, provides the mkfs.minix and fsck.minix commands. Also blkid
from the same package, recognises minix file systems.
Create version 3 file systems because MINIX 3 [1] is the only supported
version and that reportedly uses version 3 of the file system [2].
[1] MINIX 3 / History
https://en.wikipedia.org/wiki/MINIX_3#History
[2] Regarding MINIX 3 file system
https://groups.google.com/forum/#!topic/minix3/3-TeHR_23X8
"MINIX 3 uses Minix File System (MFS). More precisely MFS V3."
Closes!12 - Add minix file system support
Initial addition of a password entry dialog. Looks like:
+------------------------------------------------+
| LUKS Passphrase /dev/sdb1 |
+------------------------------------------------+
| Enter LUKS passphrase to open /dev/sdb1 |
| Passphrase: [ ] |
| |
| [ Cancel ] [ Unlock ] |
+------------------------------------------------+
A standard Gtk Dialog is used to accept the password once, with any
errors displayed in a separate error dialog afterwards. This is poor UI
design. A password dialog should remain open for all authentication
attempts and only close when successful or the dialog is cancelled or
closed. This UI design issue will be improved in following commits.
Bug 795617 - Implement opening and closing of LUKS mappings
Application level requirements for secure password management were set
out in "LUKS password handling, threats and preventative measures" [1].
The requirements are:
1) Passwords are stored in RAM and are not allowed to be paged to swap.
(However hibernating with GParted still running will write all of RAM
to swap).
2) Passwords are wiped from RAM when no longer needed. When each
password is no longer needed and when GParted closes.
3) Passwords are referenced by unique key. Recommend using LUKS UUIDs
as the unique key.
(Each LUKS password should only ever need to be entered once for each
execution of GParted. Therefore the passwords can't be stored in any
of the existing data structures such as Partitions or LUKS_Info cache
because all of these are cleared and reloaded on each device
refresh).
There seems to be two possible implementation methods: use an existing
library to provide secure memory handling, or write our own.
Libgcrypt [2] and libsodium [3] cryptographic libraries both provide
secure memory handling. (Secure memory is quite simple really, some
virtual memory locked into RAM which is zeroed when no longer needed).
Linking to an encryption library just to provide secure memory seems
like using a sledge hammer to crack a nut. Also because of requirement
(3) above a module is needed to "own" the pointers to the passwords in
the secure memory. Managing the secure memory ourselves is probably no
more code that that needed to interface to libgcrypt. Therefore handle
the secure memory ourselves.
So far the module is only compiled. It is not used anywhere in GParted.
[1] LUKS password handling, threats and preventative measures
https://bugzilla.gnome.org/show_bug.cgi?id=627701#c56
[2] libgcrypt general purpose cryptographic library, as used in GNU
Privacy Guard
https://gnupg.org/related_software/libgcrypt/
[3] libsodium crypto library
https://download.libsodium.org/doc/
Bug 795617 - Implement opening and closing of LUKS mappings
Add support for detecting UDF file systems and formatting hard disks
with revision 2.01 UDF file systems using udftools. Formatting optical
disks or any other media types is not supported yet. Changing label or
UUID after formatting is not supported as the tools do not yet exist.
Bug 784533 - Add support for UDF file system
Files were named Block_Copy and the class was named block_copy. Change
to the primary naming convention of CamelCase class name and matching
file names.
Also make CopyBlocks::copy_block() a private method as it is only used
internally within the class.
Bug 775932 - Refactor mostly applying of operations
The GParted_Core::mount_info and GParted_Core::fstab_info maps and the
methods that manipulate them are self-contained. Therefore move them to
a separate Mount_Info module and reduce the size of the monster
GParted_Core slightly.
In some cases creating an LVM2 Physical Volume on top of a DMRaid array
reports no usage information and this partition warning:
Unable to read the contents of this file system!
Because of this some operations may be unavailable.
The cause might be a missing software package.
The following list of software packages is required for lvm2
pv file system support: lvm2.
For example on Ubuntu 14.04 LTS (with GParted built with
--enable-libparted-dmraid) create an LVM2 PV in a DMRaid array
partition. GParted uses this command:
# lvm pvcreate -M 2 /dev/mapper/isw_bacdehijbd_MyArray0p2
But LVM reports the PV having a different name:
# lvm pvs
PV VG Fmt Attr PSize PFree
/dev/disk/by-id/dm-name-isw_bacdehijbd_MyArray0p2 lvm2 a-- 1.00g 1.00g
This alternate name is loaded into the LVM2_PV_Info module cache. Hence
when GParted queries partition /dev/mapper/isw_bacdehijbd_MyArray0p2 it
has no PV information against that name and reports unknown usage.
However they are actually the same block special device; major 252,
minor 2:
# ls -l /dev/mapper/isw_bacdehijbd_MyArray0p2
brw-rw---- 1 root disk 252, 2 Jul 2 11:09 /dev/mapper/isw_bacdehijbd_MyArray0p2
# ls -l /dev/disk/by-id/dm-name-isw_bacdehijbd_MyArray0p2
lrwxrwxrwx 1 root root 10 Jul 2 11:09 /dev/disk/by-id/dm-name-isw_bacdehijbd_MyArray0p2 -> ../../dm-2
# ls -l /dev/dm-2
brw-rw---- 1 root disk 252, 2 Jul 2 11:09 /dev/dm-2
To determine if two names refer to the same block special device their
major, minor numbers need to be compared, instead of string comparing
their names.
Implement class BlockSpecial which encapsulates the name and major,
minor numbers for a block special device. Also performs comparison as
needed. See bug 767842 comments 4 and 5 for further investigation and
decision for choosing to implement a class.
Replace name strings in the LVM2_PV_Info module with BlockSpecial
objects performing correct block special device comparison.
Bug 767842 - File system usage missing when tools report alternate block
device names
Write a generic progress bar class. Has the following features:
* Has separate progress and target numbers, rather than a single
completion fraction, to enable the the next feature.
* Optionally generates text reporting the amount of data copied using
the progress and target numbers like this:
"1.00 MiB of 16.00 MiB copied"
* After running for 5 seconds, also add estimated remaining time.
(Waits to allow the data copying rate to settle down a little before
estimating the remaining time). Looks like this:
"1.00 MiB of 16.00 MiB copied (00:01:59) remaining)"
The ProgressBar class is not driving the visual progress bar yet. It
has just been added into the internal block copy algorithm and generates
debug messages showing the progress bar is operating correctly.
Debugging looks like this:
DEBUG: ProgressBar::start(target=2.0636e+09, text_mode=PROGRESSBAR_TEXT_COPY_BYTES)
DEBUG: ProgressBar::update(progress=1.30023e+08) m_fraction=0.0630081 m_text="124.00 MiB of 1.92 GiB copied"
DEBUG: ProgressBar::update(progress=2.67387e+08) m_fraction=0.129573 m_text="255.00 MiB of 1.92 GiB copied"
DEBUG: ProgressBar::update(progress=4.0475e+08) m_fraction=0.196138 m_text="386.00 MiB of 1.92 GiB copied"
...
DEBUG: ProgressBar::update(progress=1.13351e+09) m_fraction=0.549289 m_text="1.06 GiB of 1.92 GiB copied (00:00:04 remaining)"
DEBUG: ProgressBar::update(progress=1.26249e+09) m_fraction=0.611789 m_text="1.18 GiB of 1.92 GiB copied (00:00:04 remaining)"
DEBUG: ProgressBar::update(progress=1.39041e+09) m_fraction=0.67378 m_text="1.29 GiB of 1.92 GiB copied (00:00:03 remaining)"
...
DEBUG: ProgressBar::update(progress=1.97552e+09) m_fraction=0.957317 m_text="1.84 GiB of 1.92 GiB copied (00:00:00 remaining)"
DEBUG: ProgressBar::update(progress=2.0636e+09) m_fraction=1 m_text="1.92 GiB of 1.92 GiB copied"
DEBUG: ProgressBar::stop()
Bug 760709 - Add progress bars to XFS and EXT2/3/4 file system specific
copy methods
Absolute minimum implementation of a PartitionLUKS class which can be
constructed, polymorphically copied and destroyed. Contains an
"encrypted" member of type Partition to represent the encrypted file
system within the LUKS format.
Create PartitionLUKS objects instead of base Partition objects when a
LUKS formatted partition is found. Only the base Partition object
member values have been populated, and the "encrypted" member remains
blank at this point.
Bug 760080 - Implement read-only LUKS support
Provide a minimal implementation of a luks file system class which only
does busy detection.
NOTE:
For now, read-only LUKS support, a LUKS partition will be busy when a
dm-crypt mapping exists. Later when read-write LUKS support is added
GParted will need to look at the busy status of the encrypted file
system within the open LUKS partition and map LUKS partition busy status
to encryption being open or closed.
Bug 760080 - Implement read-only LUKS support
Load basic details of active Device-mapper encryption mappings from the
kernel. Use dmsetup active targets.
# cryptsetup luksFormat /dev/sdb5
# cryptsetup luksFormat /dev/sdb6
# cryptsetup luksOpen /dev/sdb6 sdb6_crypt
# ls -l /dev/mapper/sdb6_crypt /dev/dm-0
lrwxrwxrwx. 1 root root 7 Nov 15 09:03 /dev/mapper/sdb6_crypt -> ../dm-0
brw-rw----. 1 root disk 253, 0 Nov 15 09:03 /dev/dm-0
# ls -l /dev/sdb6
brw-rw----. 1 root disk 8, 22 Nov 15 09:02 /dev/sdb6
# dmsetup table --target crypt
sdb6_crypt: 0 1044480 crypt aes-cbc-essiv:sha256 0000000000000000000000000000000000000000000000000000000000000000 0 8:22 4096
So far just load the mapping name and underlying block device reference
(path or major, minor pair).
Note that all supported kernels appear to report the underlying block
device as major, minor pair in the dmsetup output. Underlying block
device paths are added to the cache when found during a search to avoid
stat(2) call on subsequent searches for the same path.
Prints debugging to show results, like this:
# ./gpartedbin
======================
libparted : 2.4
======================
DEBUG: /dev/sdb5: LUKS closed
DEBUG: /dev/sdb6: LUKS open mapping /dev/mapper/sdb6_crypt
Bug 760080 - Implement read-only LUKS support
Just creates PartitionVector class and includes it in partition.h so
that it is built and validated by the compiler. Not used anywhere yet.
Implementation strategy is to create a PartitionLUKS class derived from
the Partition class. This implies polymorphism of Partition objects,
which in C++ requires using pointers and references to objects, and not
using objects directly. (See C++ object slicing). Later this
PartitionVector class will be modified to use pointers to Partition
objects and act as the owner of the pointed to Partition objects.
Bug 759726 - Implement Partition object polymorphism
Detection of Linux SWRaid members currently fails in a number of cases:
1) Arrays which use metadata type 0.90 or 1.0 store the super block at
the end of the partition. So file system signatures in at least
linear and mirrored arrays occur at the same offsets in the
underlying partitions. As libparted only recognises file systems
this is what is detected, rather than an SWRaid member.
# mdadm -E -s -v
ARRAY /dev/md/1 level=raid1 metadata=1.0 num-devices=2 UUID=15224a42:c25bbcd9:15db6000:4e5fe53a name=chimney:1
devices=/dev/sda1,/dev/sdb1
...
# wipefs /dev/sda1
offset type
----------------------------------------------------------------
0x438 ext4 [filesystem]
LABEL: chimney-boot
UUID: 10ab5f7d-7d8a-4171-8b6a-5e973b402501
0x1fffe000 linux_raid_member [raid]
LABEL: chimney:1
UUID: 15224a42-c25b-bcd9-15db-60004e5fe53a
# parted /dev/sda print
Model: ATA VBOX HARDDISK (scsi)
Disk /dev/sda: 34.4GB
Sector size (logical/physical): 512B/512B
Partition Table: msdos
Number Start End Size Type File system Flags
1 1049kB 538MB 537MB primary ext4 boot, raid
...
2) Again with metadata type 0.90 or 1.0 arrays blkid may report the
contained file system instead of an SWRaid member. Have a single
example of this configuration with a mirrored array containing the
/boot file system. Blkid reports one member as ext4 and the other as
SWRaid!
# blkid | egrep 'sd[ab]1'
/dev/sda1: UUID="10ab5f7d-7d8a-4171-8b6a-5e973b402501" TYPE="ext4" LABEL="chimney-boot"
/dev/sdb1: UUID="15224a42-c25b-bcd9-15db-60004e5fe53a" UUID_SUB="0a095e45-9360-1b17-0ad1-1fe369e22b98" LABEL="chimney:1" TYPE="linux_raid_member"
Bypassing the blkid cache gets the correct result.
# blkid -c /dev/null /dev/sda1
/dev/sda1: UUID="15224a42-c25b-bcd9-15db-60004e5fe53a" UUID_SUB="d0460f90-d11a-e80a-ee1c-3d104dae7e5d" LABEL="chimney:1" TYPE="linux_raid_member"
However this can't be used because if a user has a floppy configured
in the BIOS but no floppy attached, GParted will wait for minutes as
the kernel tries to access non-existent hardware on behalf of the
blkid query. See commit:
18f863151c
Fix long scan problem when BIOS floppy setting incorrect
3) Old versions of blkid don't recognise SWRaid members at all so always
report the file system when found. Occurs with blkid v1.0 on
RedHat / CentOS 5.
The only way I can see how to fix all these cases is to use the mdadm
command to query the configured arrays. Then use this information for
first choice when detecting partition content, making the order: SWRaid
members, libparted, blkid and internal.
GParted shell wrapper already creates temporary blank udev rules to
prevent Linux Software RAID arrays being automatically started when
GParted refreshes its device information[1]. However an administrator
could manually stop or start arrays or change their configuration
between refreshes so GParted must load this information every refresh.
On my desktop with 4 internal hard drives and 3 testing Linux Software
RAID arrays, running mdadm adds between 0.20 and 0.30 seconds to the
device refresh time.
[1] a255abf343
Prevent GParted starting stopped Linux Software RAID arrays (#709640)
Bug 756829 - SWRaid member detection enhancements
Embedded devices (Android) use GPT partition names to identify
partitions, instead of file system labels. Add support for viewing and
changing them.
As partition names are used to provide unique identification they are
never copied when copying the contents of one partition to another.
Note that GNU/Linux uses file system labels, UUIDs or device names for
identification during the boot process and afterwards so while partition
names can be used, they are optional and purely for user information.
Bug 741424 - Add support for GPT partition names
Restore the order of the source files so that they are once again
compiled in order A-Z, a-z. Order is obtained with:
fgrep .cc src/Makefile.am | LANG=C sort
fgrep .h include/Makefile.am | LANG=C sort
There was virtually no difference between the separate modules for fat16
and fat32. Remove module fat32 and patch fat16 to serve both file
system subtypes. This is equivalent to what was previously done for
ext[234] by commit:
38dc55d49c
Combine duplicate code for ext[234]
Only supports detection and creation of f2fs file systems. Requires
f2fs-tools and a blkid with f2fs support, util-linux > 2.22.2.
f2fs-tools v1.1.0 only supports file system creation.
Currently requires util-linux directly from the git repository as f2fs
support was only committed on 5 Feb 2013 and it has not yet been
released.
Closes Bug #695396 - Please apply f2fs patch
There were separate modules for ext3 and ext4 even though there
were virtually no differences with ext2. Remove the duplicate
modules and patch ext2 to serve as a common reference for all
three sub types.
Have the copy code create a background thread to do the actual copying so
that it won't block the main loop.
Part of Bug 685740 - Refactor to use asynchronous command execution
Win_Gparted and Dialog_Progress were creating threads to perform most
functions in the background. Most of the time, the only reason the
threads blocked was to execute an external command. The external command
execution has been changed to spawn the command asynchronously and wait
for completion with a nested main loop. While waiting for completion,
the pipe output is captured via events. In the future, this will allow
for it to be parsed in real time to obtain progress information.
Those tasks in GParted_Core that still block now spawn a background thread
and wait for it to complete with a nested main loop to avoid hanging the
gui.
Part of Bug #685740 - Refactor to use asynchronous command execution
Active Linux software RAID devices are detected in the
Proc_Partitions_Info method. Hence the SWRaid method is no longer
required.
Removal of the SWRaid method fixes the problem with the error message:
Could not stat device /dev/md/0 - No such file or directory
This fixes the problem because we no longer use "mdadm --examine
--scan" in an attempt to detect Linux software RAID devices. The
mdadm command was returning device names such as /dev/md/0, which are
incorrect for GParted.
NOTE: With this change, GParted no longer requires the mdadm command
to detect Linux software RAID devices.
Closes Bug #678379 - Could not stat device /dev/md/0 - No such file or
directory
Cache results from querying all LVM2 PVs in one go to minimise the
number of times lvm commands are executed. Take inspiration from
caching performed by FS_Info and Proc_Partitions_Info.
Bug #160787 - lvm support
Add minimal support for just reporting the space usage of LVM2 PVs.
Accept libparted / blkid detection of LVM2 PVs first, falling back on
GParted's specific detection code otherwise. Maintain LVM not supported
warning message.
Bug #160787 - lvm support
Add the ability to set a new random UUID on file systems that provide
the appropriate tools to perform this action.
Update the help manual to include this new functionality. Also add
reference links to "setting a partition label" and "changing a
partition UUID" in the "copying and pasting a partition" section.
This patch does not include setting the UUID on an NTFS file system.
Bug #667278 - Add support for setting UUID
Bug #608308 - fix documentation - Copying and Pasting a Partition
Requires libparted 2.4 or higher, or blkid from utils-linux 2.20 or
higher for nilfs2 file system detection.
Requires nilfs-utils for nilfs2 file system support.
Closes Bug #642842 - nilfs is not detected
This reason for refactoring is to simplify the large GParted_Core
class, to help minimize disk reads, and to group the logic for
processing the file /proc/partitions into a single logical class.
This adds initial handlers for Btrfs; only .create, .check and
.read_label are done for now, via external btrfs-tools.
Other methods are still only stubs.
Auto detection of Linux software RAID devices was lost in GParted
0.3.8. This was because device scanning by the libparted device
call ped_device_probe_all() was replaced with custom code within
GParted to scan /proc/partitions for devices.
The reason the libparted call was replaced was due to a long
scanning problem with ped_device_probe_all(), a non-existent
physical floppy device, and a BIOS setting indicating a floppy
drive existed. See bug #351753:
https://bugzilla.gnome.org/show_bug.cgi?id=351753
* include/Makefile.am,
include/Operation.h,
include/Win_GParted.h,
src/GParted_Core.cc,
src/Makefile.am,
src/Win_GParted.cc,
include/OperationCheck.h (new),
src/OperationCheck.cc (new): added 'check' operation. The
functionality was already there, but it was not possible yet to
activate it from the gui.
* src/DialogManageFlags.cc: disabled resizing of this dialog
* include/DialogFeatures.h,
include/Makefile.am,
include/Win_GParted.h,
src/DialogFeatures.cc,
src/Makefile.am,
src/Win_GParted.cc: renamed 'Filesystems' to 'Features' in the
featuredialog to better reflect the actual functionality
* include/Dialog_Filesystems.h,
src/Dialog_Filesystems.cc: removed