#include "../include/GParted_Core.h" #include #include Glib::ustring ped_error ; //see e.g. ped_exception_handler() namespace GParted { GParted_Core::GParted_Core() { lp_device = NULL ; lp_disk = NULL ; lp_partition = NULL ; p_filesystem = NULL ; ped_exception_set_handler( ped_exception_handler ) ; //get valid flags ... for ( PedPartitionFlag flag = ped_partition_flag_next( static_cast( NULL ) ) ; flag ; flag = ped_partition_flag_next( flag ) ) flags .push_back( flag ) ; //throw libpartedversion to the stdout to see which version is actually used. std::cout << "======================" << std::endl ; std::cout << "libparted : " << ped_get_version() << std::endl ; std::cout << "======================" << std::endl ; //initialize filesystemlist find_supported_filesystems() ; } void GParted_Core::find_supported_filesystems() { FILESYSTEMS .clear() ; ext2 fs_ext2; FILESYSTEMS .push_back( fs_ext2 .get_filesystem_support() ) ; ext3 fs_ext3; FILESYSTEMS .push_back( fs_ext3 .get_filesystem_support() ) ; fat16 fs_fat16; FILESYSTEMS .push_back( fs_fat16 .get_filesystem_support() ) ; fat32 fs_fat32; FILESYSTEMS .push_back( fs_fat32 .get_filesystem_support() ) ; hfs fs_hfs; FILESYSTEMS .push_back( fs_hfs .get_filesystem_support() ) ; hfsplus fs_hfsplus; FILESYSTEMS .push_back( fs_hfsplus .get_filesystem_support() ) ; jfs fs_jfs; FILESYSTEMS .push_back( fs_jfs .get_filesystem_support() ) ; linux_swap fs_linux_swap; FILESYSTEMS .push_back( fs_linux_swap .get_filesystem_support() ) ; ntfs fs_ntfs; FILESYSTEMS .push_back( fs_ntfs .get_filesystem_support() ) ; reiser4 fs_reiser4; FILESYSTEMS .push_back( fs_reiser4 .get_filesystem_support() ) ; reiserfs fs_reiserfs; FILESYSTEMS .push_back( fs_reiserfs .get_filesystem_support() ) ; xfs fs_xfs; FILESYSTEMS .push_back( fs_xfs .get_filesystem_support() ) ; //unknown filesystem (default when no match is found) FS fs ; fs .filesystem = GParted::FS_UNKNOWN ; FILESYSTEMS .push_back( fs ) ; } void GParted_Core::set_user_devices( const std::vector & user_devices ) { this ->device_paths = user_devices ; this ->probe_devices = ! user_devices .size() ; } bool GParted_Core::check_device_path( const Glib::ustring & device_path ) { if ( device_path .length() > 6 && device_path .is_ascii() && open_device( device_path ) ) { close_device_and_disk() ; return true ; } return false ; } void GParted_Core::get_devices( std::vector & devices ) { devices .clear() ; Device temp_device ; init_maps() ; //only probe if no devices were specified as arguments.. if ( probe_devices ) { device_paths .clear() ; //try to find all available devices ped_device_probe_all(); lp_device = ped_device_get_next( NULL ); while ( lp_device ) { device_paths .push_back( lp_device ->path ) ; lp_device = ped_device_get_next( lp_device ) ; } close_device_and_disk() ; } for ( unsigned int t = 0 ; t < device_paths .size() ; t++ ) { if ( check_device_path( device_paths[ t ] ) && open_device_and_disk( device_paths[ t ], false ) ) { temp_device .Reset() ; //device info.. temp_device .add_path( device_paths[ t ] ) ; temp_device .add_paths( get_alternate_paths( temp_device .get_path() ) ) ; temp_device .model = lp_device ->model ; temp_device .heads = lp_device ->bios_geom .heads ; temp_device .sectors = lp_device ->bios_geom .sectors ; temp_device .cylinders = lp_device ->bios_geom .cylinders ; temp_device .length = temp_device .heads * temp_device .sectors * temp_device .cylinders ; temp_device .cylsize = temp_device .heads * temp_device .sectors ; //make sure cylsize is at least 1 MiB if ( temp_device .cylsize < MEBIBYTE ) temp_device .cylsize = MEBIBYTE ; //normal harddisk if ( lp_disk ) { temp_device .disktype = lp_disk ->type ->name ; temp_device .max_prims = ped_disk_get_max_primary_partition_count( lp_disk ) ; set_device_partitions( temp_device ) ; set_mountpoints( temp_device .partitions ) ; set_used_sectors( temp_device .partitions ) ; if ( temp_device .highest_busy ) temp_device .readonly = ! ped_disk_commit_to_os( lp_disk ) ; } //harddisk without disklabel else { temp_device .disktype = _("unrecognized") ; temp_device .max_prims = -1 ; Partition partition_temp ; partition_temp .Set_Unallocated( temp_device .get_path(), 0, temp_device .length, false ); temp_device .partitions .push_back( partition_temp ); } devices .push_back( temp_device ) ; close_device_and_disk() ; } } //clear leftover information... //NOTE that we cannot clear mountinfo since it might be needed in get_all_mountpoints() alternate_paths .clear() ; fstab_info .clear() ; } void GParted_Core::read_mountpoints_from_file( const Glib::ustring & filename, std::map< Glib::ustring, std::vector > & map ) { std::string line ; char node[255], mountpoint[255] ; unsigned int index ; std::ifstream file( filename .c_str() ) ; if ( file ) { while ( getline( file, line ) ) if ( Glib::str_has_prefix( line, "/" ) && sscanf( line .c_str(), "%255s %255s", node, mountpoint ) == 2 && static_cast( node ) != "/dev/root" ) { line = mountpoint ; //see if mountpoint contains spaces and deal with it index = line .find( "\\040" ) ; if ( index < line .length() ) line .replace( index, 4, " " ) ; map[ node ] .push_back( line ) ; } file .close() ; } } void GParted_Core::init_maps() { alternate_paths .clear() ; mount_info .clear() ; fstab_info .clear() ; read_mountpoints_from_file( "/proc/mounts", mount_info ) ; read_mountpoints_from_file( "/etc/mtab", mount_info ) ; read_mountpoints_from_file( "/etc/fstab", fstab_info ) ; //sort the mountpoints and remove duplicates.. (no need to do this for fstab_info) for ( iter_mp = mount_info .begin() ; iter_mp != mount_info .end() ; ++iter_mp ) { std::sort( iter_mp ->second .begin(), iter_mp ->second .end() ) ; iter_mp ->second .erase( std::unique( iter_mp ->second .begin(), iter_mp ->second .end() ), iter_mp ->second .end() ) ; } //initialize alternate_paths... std::string line ; std::ifstream proc_partitions( "/proc/partitions" ) ; if ( proc_partitions ) { char c_str[255] ; while ( getline( proc_partitions, line ) ) if ( sscanf( line .c_str(), "%*d %*d %*d %255s", c_str ) == 1 ) { line = "/dev/" ; line += c_str ; if ( realpath( line .c_str(), c_str ) && line != c_str ) { //because we can make no assumption about which path libparted will detect //we add all combinations. alternate_paths[ c_str ] = line ; alternate_paths[ line ] = c_str ; } } proc_partitions .close() ; } } GParted::FILESYSTEM GParted_Core::get_filesystem() { //standard libparted filesystems.. if ( lp_partition && lp_partition ->fs_type ) { if ( static_cast( lp_partition ->fs_type ->name ) == "extended" ) return GParted::FS_EXTENDED ; else if ( static_cast( lp_partition ->fs_type ->name ) == "ext2" ) return GParted::FS_EXT2 ; else if ( static_cast( lp_partition ->fs_type ->name ) == "ext3" ) return GParted::FS_EXT3 ; else if ( static_cast( lp_partition ->fs_type ->name ) == "linux-swap" ) return GParted::FS_LINUX_SWAP ; else if ( static_cast( lp_partition ->fs_type ->name ) == "fat16" ) return GParted::FS_FAT16 ; else if ( static_cast( lp_partition ->fs_type ->name ) == "fat32" ) return GParted::FS_FAT32 ; else if ( static_cast( lp_partition ->fs_type ->name ) == "ntfs" ) return GParted::FS_NTFS ; else if ( static_cast( lp_partition ->fs_type ->name ) == "reiserfs" ) return GParted::FS_REISERFS ; else if ( static_cast( lp_partition ->fs_type ->name ) == "xfs" ) return GParted::FS_XFS ; else if ( static_cast( lp_partition ->fs_type ->name ) == "jfs" ) return GParted::FS_JFS ; else if ( static_cast( lp_partition ->fs_type ->name ) == "hfs" ) return GParted::FS_HFS ; else if ( static_cast( lp_partition ->fs_type ->name ) == "hfs+" ) return GParted::FS_HFSPLUS ; else if ( static_cast( lp_partition ->fs_type ->name ) == "ufs" ) return GParted::FS_UFS ; } //other filesystems libparted couldn't detect (i've send patches for these filesystems to the parted guys) char buf[512] ; ped_device_open( lp_device ); //reiser4 ped_geometry_read( & lp_partition ->geom, buf, 128, 1 ) ; ped_device_close( lp_device ); if ( static_cast( buf ) == "ReIsEr4" ) return GParted::FS_REISER4 ; //no filesystem found.... partition_temp .error = _( "Unable to detect filesystem! Possible reasons are:" ) ; partition_temp .error += "\n-"; partition_temp .error += _( "The filesystem is damaged" ) ; partition_temp .error += "\n-" ; partition_temp .error += _( "The filesystem is unknown to libparted" ) ; partition_temp .error += "\n-"; partition_temp .error += _( "There is no filesystem available (unformatted)" ) ; return GParted::FS_UNKNOWN ; } void GParted_Core::set_device_partitions( Device & device ) { int EXT_INDEX = -1 ; //clear partitions device .partitions .clear() ; lp_partition = ped_disk_next_partition( lp_disk, NULL ) ; while ( lp_partition ) { partition_temp .Reset() ; switch ( lp_partition ->type ) { case PED_PARTITION_NORMAL: case PED_PARTITION_LOGICAL: partition_temp .Set( device .get_path(), ped_partition_get_path( lp_partition ), lp_partition ->num, lp_partition ->type == 0 ? GParted::TYPE_PRIMARY : GParted::TYPE_LOGICAL, get_filesystem(), lp_partition ->geom .start, lp_partition ->geom .end, lp_partition ->type, ped_partition_is_busy( lp_partition ) ); partition_temp .add_paths( get_alternate_paths( partition_temp .get_path() ) ) ; set_flags( partition_temp ) ; if ( partition_temp .busy && partition_temp .partition_number > device .highest_busy ) device .highest_busy = partition_temp .partition_number ; break ; case PED_PARTITION_EXTENDED: partition_temp .Set( device .get_path(), ped_partition_get_path( lp_partition ), lp_partition ->num, GParted::TYPE_EXTENDED, GParted::FS_EXTENDED, lp_partition ->geom .start, lp_partition ->geom .end, false, ped_partition_is_busy( lp_partition ) ); partition_temp .add_paths( get_alternate_paths( partition_temp .get_path() ) ) ; set_flags( partition_temp ) ; EXT_INDEX = device .partitions .size() ; break ; default: break; } //if there's an end, there's a partition ;) if ( partition_temp .sector_end > -1 ) { if ( ! partition_temp .inside_extended ) device .partitions .push_back( partition_temp ); else device .partitions[ EXT_INDEX ] .logicals .push_back( partition_temp ) ; } //next partition (if any) lp_partition = ped_disk_next_partition( lp_disk, lp_partition ) ; } if ( EXT_INDEX > -1 ) insert_unallocated( device .get_path(), device .partitions[ EXT_INDEX ] .logicals, device .partitions[ EXT_INDEX ] .sector_start, device .partitions[ EXT_INDEX ] .sector_end, true ) ; insert_unallocated( device .get_path(), device .partitions, 0, device .length -1, false ) ; } void GParted_Core::set_mountpoints( std::vector & partitions ) { for ( unsigned int t = 0 ; t < partitions .size() ; t++ ) { if ( ( partitions[ t ] .type == GParted::TYPE_PRIMARY || partitions[ t ] .type == GParted::TYPE_LOGICAL ) && partitions[ t ] .filesystem != GParted::FS_LINUX_SWAP ) { if ( partitions[ t ] .busy ) { for ( unsigned int i = 0 ; i < partitions[ t ] .get_paths() .size() ; i++ ) { iter_mp = mount_info .find( partitions[ t ] .get_paths()[ i ] ) ; if ( iter_mp != mount_info .end() ) { partitions[ t ] .add_mountpoints( iter_mp ->second ) ; break ; } } if ( partitions[ t ] .get_mountpoints() .empty() ) partitions[ t ] .error = _("Unable to find mountpoint") ; } else { iter_mp = fstab_info .find( partitions[ t ] .get_path() ); if ( iter_mp != fstab_info .end() ) partitions[ t ] .add_mountpoints( iter_mp ->second ) ; } } else if ( partitions[ t ] .type == GParted::TYPE_EXTENDED ) set_mountpoints( partitions[ t ] .logicals ) ; } } std::vector GParted_Core::get_alternate_paths( const Glib::ustring & path ) { std::vector paths ; iter = alternate_paths .find( path ) ; if ( iter != alternate_paths .end() ) paths .push_back( iter ->second ) ; return paths ; } void GParted_Core::set_used_sectors( std::vector & partitions ) { struct statvfs sfs ; temp = _("Unable to read the contents of this filesystem!") ; temp += "\n" ; temp += _("Because of this some operations may be unavailable.") ; temp += "\n\n" ; temp += _("Did you install the correct plugin for this filesystem?") ; for ( unsigned int t = 0 ; t < partitions .size() ; t++ ) { if ( partitions[ t ] .filesystem != GParted::FS_LINUX_SWAP && partitions[ t ] .filesystem != GParted::FS_UNKNOWN ) { if ( partitions[ t ] .type == GParted::TYPE_PRIMARY || partitions[ t ] .type == GParted::TYPE_LOGICAL ) { if ( partitions[ t ] .busy ) { if ( partitions[ t ] .get_mountpoints() .size() > 0 ) { if ( statvfs( partitions[ t ] .get_mountpoint() .c_str(), &sfs ) == 0 ) partitions[ t ] .Set_Unused( sfs .f_bfree * (sfs .f_bsize / 512) ) ; else partitions[ t ] .error = "statvfs (" + partitions[ t ] .get_mountpoint() + "): " + Glib::strerror( errno ); } } else { switch( get_fs( partitions[ t ] .filesystem ) .read ) { case GParted::FS::EXTERNAL : set_proper_filesystem( partitions[ t ] .filesystem ) ; p_filesystem ->Set_Used_Sectors( partitions[ t ] ) ; break ; case GParted::FS::LIBPARTED : LP_Set_Used_Sectors( partitions[ t ] ) ; break ; default: break ; } } if ( partitions[ t ] .sectors_used == -1 && partitions[ t ] .error .empty() ) partitions[ t ] .error = temp ; } else if ( partitions[ t ] .type == GParted::TYPE_EXTENDED ) set_used_sectors( partitions[ t ] .logicals ) ; } } } void GParted_Core::insert_unallocated( const Glib::ustring & device_path, std::vector & partitions, Sector start, Sector end, bool inside_extended ) { partition_temp .Reset() ; partition_temp .Set_Unallocated( device_path, 0, 0, inside_extended ) ; //if there are no partitions at all.. if ( partitions .empty() ) { partition_temp .sector_start = start ; partition_temp .sector_end = end ; partitions .push_back( partition_temp ); return ; } //start <---> first partition start if ( (partitions .front( ) .sector_start - start) >= MEBIBYTE ) { partition_temp .sector_start = start ; partition_temp .sector_end = partitions .front( ) .sector_start -1 ; partitions .insert( partitions .begin( ), partition_temp ); } //look for gaps in between for ( unsigned int t =0 ; t < partitions .size( ) -1 ; t++ ) if ( ( partitions[ t +1 ] .sector_start - partitions[ t ] .sector_end ) >= MEBIBYTE ) { partition_temp .sector_start = partitions[ t ] .sector_end +1 ; partition_temp .sector_end = partitions[ t +1 ] .sector_start -1 ; partitions .insert( partitions .begin( ) + ++t, partition_temp ); } //last partition end <---> end if ( (end - partitions .back( ) .sector_end ) >= MEBIBYTE ) { partition_temp .sector_start = partitions .back( ) .sector_end +1 ; partition_temp .sector_end = end ; partitions .push_back( partition_temp ); } } bool GParted_Core::apply_operation_to_disk( Operation & operation ) { switch ( operation .operationtype ) { case DELETE: return Delete( operation .partition_original, operation .operation_details .sub_details ) ; case CREATE: return create( operation .device, operation .partition_new, operation .operation_details .sub_details ) ; case RESIZE_MOVE: return resize( operation .device, operation .partition_original, operation .partition_new, operation .operation_details .sub_details ) ; case FORMAT: return format( operation .partition_new, operation .operation_details .sub_details ) ; case COPY: return copy( operation .copied_partition_path, operation .partition_new, operation .partition_new .get_length() - operation .device .cylsize, operation .operation_details .sub_details ) ; } return false ; } bool GParted_Core::create( const Device & device, Partition & new_partition, std::vector & operation_details ) { if ( new_partition .type == GParted::TYPE_EXTENDED ) { return create_empty_partition( new_partition, operation_details ) ; } else if ( create_empty_partition( new_partition, operation_details, get_fs( new_partition .filesystem ) .MIN ) ) { set_proper_filesystem( new_partition .filesystem ) ; //most likely this means the user created an unformatted partition, //however in theory, it could also screw some errorhandling. if ( ! p_filesystem ) return true ; return set_partition_type( new_partition, operation_details ) && p_filesystem ->Create( new_partition, operation_details ) ; } return false ; } bool GParted_Core::format( const Partition & partition, std::vector & operation_details ) { //remove all filesystem signatures... erase_filesystem_signatures( partition ) ; set_proper_filesystem( partition .filesystem ) ; return set_partition_type( partition, operation_details ) && p_filesystem ->Create( partition, operation_details ) ; } bool GParted_Core::Delete( const Partition & partition, std::vector & operation_details ) { bool return_value = false ; if ( open_device_and_disk( partition .device_path ) ) { if ( partition .type == GParted::TYPE_EXTENDED ) lp_partition = ped_disk_extended_partition( lp_disk ) ; else lp_partition = ped_disk_get_partition_by_sector( lp_disk, (partition .sector_end + partition .sector_start) / 2 ) ; return_value = ped_disk_delete_partition( lp_disk, lp_partition ) && commit() ; sleep( 1 ) ; //give the kernel some time to reread the partitiontable close_device_and_disk() ; } return return_value ; } bool GParted_Core::resize( const Device & device, const Partition & partition_old, const Partition & partition_new, std::vector & operation_details ) { //extended partition if ( partition_old .type == GParted::TYPE_EXTENDED ) return resize_container_partition( partition_old, partition_new, false, operation_details ) ; bool succes = false ; set_proper_filesystem( partition_new .filesystem ) ; //resize using libparted.. if ( get_fs( partition_old .filesystem ) .grow == GParted::FS::LIBPARTED ) { if ( p_filesystem && p_filesystem ->Check_Repair( partition_new, operation_details ) ) { succes = resize_normal_using_libparted( partition_old, partition_new, operation_details ) ; //always check after a resize, but if it failes the whole operation failes if ( ! p_filesystem ->Check_Repair( partition_new, operation_details ) ) succes = false ; } return succes ; } //use custom resize tools.. if ( p_filesystem && p_filesystem ->Check_Repair( partition_new, operation_details ) ) { succes = true ; if ( partition_new .get_length() < partition_old .get_length() ) { p_filesystem ->cylinder_size = device .cylsize ; succes = p_filesystem ->Resize( partition_new, operation_details ) ; } if ( succes ) succes = resize_container_partition( partition_old, partition_new, ! get_fs( partition_new .filesystem ) .move, operation_details ) ; //these 3 are always executed, however, if 1 of them fails the whole operation fails if ( ! p_filesystem ->Check_Repair( partition_new, operation_details ) ) succes = false ; //expand filesystem to fit exactly in partition if ( ! p_filesystem ->Resize( partition_new, operation_details, true ) ) succes = false ; if ( ! p_filesystem ->Check_Repair( partition_new, operation_details ) ) succes = false ; return succes ; } return false ; } bool GParted_Core::copy( const Glib::ustring & src_part_path, Partition & partition_dest, Sector min_size, std::vector & operation_details ) { set_proper_filesystem( partition_dest .filesystem ) ; Partition src_partition( src_part_path ) ; //FIXME: some filesystems (e.g. fat*) can be copied using libparted.. return ( p_filesystem && p_filesystem ->Check_Repair( src_partition, operation_details ) && create_empty_partition( partition_dest, operation_details, min_size ) > 0 && set_partition_type( partition_dest, operation_details ) && p_filesystem ->Copy( src_part_path, partition_dest .get_path(), operation_details ) && p_filesystem ->Check_Repair( partition_dest, operation_details ) && p_filesystem ->Resize( partition_dest, operation_details, true ) && p_filesystem ->Check_Repair( partition_dest, operation_details ) ) ; } bool GParted_Core::Set_Disklabel( const Glib::ustring & device_path, const Glib::ustring & disklabel ) { bool return_value = false ; if ( open_device_and_disk( device_path, false ) ) { PedDiskType *type = NULL ; type = ped_disk_type_get( disklabel .c_str() ) ; if ( type ) { lp_disk = ped_disk_new_fresh( lp_device, type ); return_value = commit() ; } close_device_and_disk() ; } return return_value ; } const std::vector & GParted_Core::get_filesystems() const { return FILESYSTEMS ; } const FS & GParted_Core::get_fs( GParted::FILESYSTEM filesystem ) const { for ( unsigned int t = 0 ; t < FILESYSTEMS .size( ) ; t++ ) if ( FILESYSTEMS[ t ] .filesystem == filesystem ) return FILESYSTEMS[ t ] ; return FILESYSTEMS .back( ) ; } std::vector GParted_Core::get_disklabeltypes( ) { std::vector disklabeltypes ; //msdos should be first in the list disklabeltypes .push_back( "msdos" ) ; PedDiskType *disk_type ; for ( disk_type = ped_disk_type_get_next( NULL ) ; disk_type ; disk_type = ped_disk_type_get_next( disk_type ) ) if ( static_cast( disk_type->name ) != "msdos" ) disklabeltypes .push_back( disk_type->name ) ; return disklabeltypes ; } std::vector GParted_Core::get_all_mountpoints() { std::vector mountpoints ; for ( iter_mp = mount_info .begin() ; iter_mp != mount_info .end() ; ++iter_mp ) mountpoints .insert( mountpoints .end(), iter_mp ->second .begin(), iter_mp ->second .end() ) ; return mountpoints ; } void GParted_Core::LP_Set_Used_Sectors( Partition & partition ) { PedFileSystem *fs = NULL; PedConstraint *constraint = NULL; if ( lp_disk ) { lp_partition = ped_disk_get_partition_by_sector( lp_disk, (partition .sector_end + partition .sector_start) / 2 ) ; if ( lp_partition ) { fs = ped_file_system_open( & lp_partition ->geom ); if ( fs ) { constraint = ped_file_system_get_resize_constraint( fs ) ; if ( constraint ) { partition .Set_Unused( partition .get_length() - constraint ->min_size ) ; ped_constraint_destroy( constraint ); } ped_file_system_close( fs ) ; } } } } int GParted_Core::create_empty_partition( Partition & new_partition, std::vector & operation_details, Sector min_size ) { operation_details .push_back( OperationDetails( _("create empty partition") ) ) ; new_partition .partition_number = 0 ; ped_error .clear() ; if ( open_device_and_disk( new_partition .device_path ) ) { PedPartitionType type; lp_partition = NULL ; PedConstraint *constraint = NULL ; //create new partition switch ( new_partition .type ) { case GParted::TYPE_PRIMARY: type = PED_PARTITION_NORMAL ; break ; case GParted::TYPE_LOGICAL: type = PED_PARTITION_LOGICAL ; break ; case GParted::TYPE_EXTENDED: type = PED_PARTITION_EXTENDED ; break ; default : type = PED_PARTITION_FREESPACE; } lp_partition = ped_partition_new( lp_disk, type, NULL, new_partition .sector_start, new_partition .sector_end ) ; if ( lp_partition ) { if ( new_partition .strict ) { PedGeometry *geom = ped_geometry_new( lp_device, new_partition .sector_start, new_partition .get_length() ) ; if ( geom ) constraint = ped_constraint_exact( geom ) ; } else constraint = ped_constraint_any( lp_device ); if ( constraint ) { if ( min_size > 0 ) constraint ->min_size = min_size ; if ( ped_disk_add_partition( lp_disk, lp_partition, constraint ) && commit() ) { new_partition .add_path( ped_partition_get_path( lp_partition ), true ) ; new_partition .partition_number = lp_partition ->num ; Sector start = lp_partition ->geom .start ; Sector end = lp_partition ->geom .end ; operation_details .back() .sub_details .push_back( OperationDetails( "" + String::ucompose( _("path: %1"), new_partition .get_path() ) + "\n" + String::ucompose( _("start: %1"), start ) + "\n" + String::ucompose( _("end: %1"), end ) + "\n" + String::ucompose( _("size: %1"), Utils::format_size( end - start + 1 ) ) + "", OperationDetails::NONE ) ) ; } ped_constraint_destroy( constraint ); } } close_device_and_disk() ; } if ( new_partition .partition_number > 0 && ( new_partition .type == GParted::TYPE_EXTENDED || ( wait_for_node( new_partition .get_path() ) && erase_filesystem_signatures( new_partition ) ) ) ) { operation_details .back() .status = OperationDetails::SUCCES ; return new_partition .partition_number ; } else { if ( ! ped_error .empty() ) operation_details .back() .sub_details .push_back( OperationDetails( "" + ped_error + "", OperationDetails::NONE ) ) ; operation_details .back() .status = OperationDetails::ERROR ; return 0 ; } } bool GParted_Core::resize_container_partition( const Partition & partition_old, const Partition & partition_new, bool fixed_start, std::vector & operation_details ) { operation_details .push_back( OperationDetails( _("resize partition") ) ) ; operation_details .back() .sub_details .push_back( OperationDetails( "" + String::ucompose( _("old start: %1"), partition_old .sector_start ) + "\n" + String::ucompose( _("old end: %1"), partition_old .sector_end ) + "\n" + String::ucompose( _("old size: %1"), Utils::format_size( partition_old .get_length() ) ) + "", OperationDetails::NONE ) ) ; bool return_value = false ; PedConstraint *constraint = NULL ; lp_partition = NULL ; ped_error .clear() ; if ( open_device_and_disk( partition_old .device_path ) ) { if ( partition_old .type == GParted::TYPE_EXTENDED ) lp_partition = ped_disk_extended_partition( lp_disk ) ; else lp_partition = ped_disk_get_partition_by_sector( lp_disk, (partition_old .sector_end + partition_old .sector_start) / 2 ) ; if ( lp_partition ) { constraint = ped_constraint_any( lp_device ); if ( fixed_start && constraint ) { //create a constraint which keeps de startpoint intact and rounds the end to a cylinder ped_disk_set_partition_geom( lp_disk, lp_partition, constraint, partition_new .sector_start, partition_new .sector_end ) ; ped_constraint_destroy( constraint ); constraint = NULL ; ped_geometry_set_start( & lp_partition ->geom, partition_new .sector_start ) ; constraint = ped_constraint_exact( & lp_partition ->geom ) ; } if ( constraint ) { if ( ped_disk_set_partition_geom( lp_disk, lp_partition, constraint, partition_new .sector_start, partition_new .sector_end ) ) return_value = commit() ; ped_constraint_destroy( constraint ); } } close_device_and_disk() ; } if ( return_value ) { //use start/end vars since lp_partition ->geom loses his values after a functioncall :/ //this is actually quite weird, but i don't have time to investigate it more thorough. Sector start = lp_partition ->geom .start ; Sector end = lp_partition ->geom .end ; operation_details .back() .sub_details .push_back( OperationDetails( "" + String::ucompose( _("new start: %1"), start ) + "\n" + String::ucompose( _("new end: %1"), end ) + "\n" + String::ucompose( _("new size: %1"), Utils::format_size( end - start + 1 ) ) + "", OperationDetails::NONE ) ) ; } else if ( ! ped_error .empty() ) operation_details .back() .sub_details .push_back( OperationDetails( "" + ped_error + "", OperationDetails::NONE ) ) ; if ( partition_old .type == GParted::TYPE_EXTENDED ) { operation_details .back() .status = return_value ? OperationDetails::SUCCES : OperationDetails::ERROR ; return return_value ; } else { return_value &= wait_for_node( partition_new .get_path() ) ; operation_details .back() .status = return_value ? OperationDetails::SUCCES : OperationDetails::ERROR ; return return_value ; } } bool GParted_Core::resize_normal_using_libparted( const Partition & partition_old, const Partition & partition_new, std::vector & operation_details ) { operation_details .push_back( OperationDetails( _("resize partition and filesystem using libparted") ) ) ; bool return_value = false ; PedFileSystem *fs = NULL ; PedConstraint *constraint = NULL ; lp_partition = NULL ; ped_error .clear() ; if ( open_device_and_disk( partition_old .device_path ) ) { lp_partition = ped_disk_get_partition_by_sector( lp_disk, (partition_old .sector_end + partition_old .sector_start) / 2 ) ; if ( lp_partition ) { fs = ped_file_system_open( & lp_partition ->geom ); if ( fs ) { constraint = ped_file_system_get_resize_constraint( fs ); if ( constraint ) { if ( ped_disk_set_partition_geom( lp_disk, lp_partition, constraint, partition_new .sector_start, partition_new .sector_end ) && ped_file_system_resize( fs, & lp_partition ->geom, NULL ) ) return_value = commit() ; ped_constraint_destroy( constraint ); } ped_file_system_close( fs ); } } close_device_and_disk() ; } operation_details .back() .status = return_value ? OperationDetails::SUCCES : OperationDetails::ERROR ; if ( ! return_value && ! ped_error .empty() ) operation_details .back() .sub_details .push_back( OperationDetails( "" + ped_error + "", OperationDetails::NONE ) ) ; return return_value ; } void GParted_Core::set_flags( Partition & partition ) { for ( unsigned int t = 0 ; t < flags .size() ; t++ ) if ( ped_partition_get_flag( lp_partition, flags[ t ] ) ) partition .flags .push_back( ped_partition_flag_get_name( flags[ t ] ) ) ; } void GParted_Core::set_proper_filesystem( const FILESYSTEM & filesystem ) { if ( p_filesystem ) delete p_filesystem ; switch( filesystem ) { case FS_EXT2 : p_filesystem = new ext2() ; break ; case FS_EXT3 : p_filesystem = new ext3() ; break ; case FS_LINUX_SWAP : p_filesystem = new linux_swap() ; break ; case FS_FAT16 : p_filesystem = new fat16() ; break ; case FS_FAT32 : p_filesystem = new fat32() ; break ; case FS_NTFS : p_filesystem = new ntfs() ; break ; case FS_REISERFS : p_filesystem = new reiserfs() ; break ; case FS_REISER4 : p_filesystem = new reiser4() ; break ; case FS_XFS : p_filesystem = new xfs() ; break ; case FS_JFS : p_filesystem = new jfs() ; break ; case FS_HFS : p_filesystem = new hfs() ; break ; case FS_HFSPLUS : p_filesystem = new hfsplus() ; break ; default : p_filesystem = NULL ; } } bool GParted_Core::set_partition_type( const Partition & partition, std::vector & operation_details ) { operation_details .push_back( OperationDetails( _("set partitiontype") ) ) ; bool return_value = false ; if ( open_device_and_disk( partition .device_path ) ) { PedFileSystemType * fs_type = ped_file_system_type_get( Utils::Get_Filesystem_String( partition .filesystem ) .c_str() ) ; //default is Linux (83) if ( ! fs_type ) fs_type = ped_file_system_type_get( "ext2" ) ; if ( fs_type ) { lp_partition = ped_disk_get_partition_by_sector( lp_disk, (partition .sector_end + partition .sector_start) / 2 ) ; if ( lp_partition && ped_partition_set_system( lp_partition, fs_type ) && commit() ) return_value = wait_for_node( partition .get_path() ) ; } close_device_and_disk() ; } operation_details .back() .status = return_value ? OperationDetails::SUCCES : OperationDetails::ERROR ; return return_value ; } bool GParted_Core::wait_for_node( const Glib::ustring & node ) { //we'll loop for 10 seconds or till 'node' appeares... for( short t = 0 ; t < 50 ; t++ ) { if ( Glib::file_test( node, Glib::FILE_TEST_EXISTS ) ) { sleep( 1 ) ; //apperantly the node isn't available immediatly after file_test returns succesfully :/ return true ; } else usleep( 200000 ) ; //200 milliseconds } return false ; } bool GParted_Core::erase_filesystem_signatures( const Partition & partition ) { bool return_value = false ; if ( open_device_and_disk( partition .device_path ) ) { lp_partition = ped_disk_get_partition_by_sector( lp_disk, (partition .sector_end + partition .sector_start) / 2 ) ; if ( lp_partition && ped_file_system_clobber( & lp_partition ->geom ) ) { //filesystems not yet supported by libparted if ( ped_device_open( lp_device ) ) { //reiser4 stores "ReIsEr4" at sector 128 return_value = ped_geometry_write( & lp_partition ->geom, "0000000", 128, 1 ) ; ped_device_close( lp_device ) ; } } close_device_and_disk() ; } return return_value ; } bool GParted_Core::open_device( const Glib::ustring & device_path ) { lp_device = ped_device_get( device_path .c_str() ); return lp_device ; } bool GParted_Core::open_device_and_disk( const Glib::ustring & device_path, bool strict ) { if ( open_device( device_path ) ) lp_disk = ped_disk_new( lp_device ); //if ! disk and writeable it's probably a HD without disklabel. //We return true here and deal with them in GParted_Core::get_devices if ( ! lp_disk && ( strict || lp_device ->read_only ) ) { ped_device_destroy( lp_device ) ; lp_device = NULL ; return false; } return true ; } void GParted_Core::close_device_and_disk() { if ( lp_device ) ped_device_destroy( lp_device ) ; if ( lp_disk ) ped_disk_destroy( lp_disk ) ; lp_device = NULL ; lp_disk = NULL ; } bool GParted_Core::commit() { bool return_value = ped_disk_commit_to_dev( lp_disk ) ; ped_disk_commit_to_os( lp_disk ) ; return return_value ; } PedExceptionOption GParted_Core::ped_exception_handler( PedException * e ) { std::cout << e ->message << std::endl ; ped_error = e ->message ; return PED_EXCEPTION_UNHANDLED ; } } //GParted