gparted/tests/test_PipeCapture.cc

414 lines
14 KiB
C++

/* Copyright (C) 2017 Mike Fleetwood
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
/* Test PipeCapture
*
* All the tests work by creating a pipe(3) and using a separate thread to write data into
* the pipe with PipeCapture running in the initial thread. Captured data is then checked
* that it either matches the input or different expected output depending on the features
* being tested.
*/
#include "PipeCapture.h"
#include "gtest/gtest.h"
#include <stddef.h>
#include <stdio.h>
#include <sstream>
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <string>
#include <sigc++/sigc++.h>
#include <glib.h>
#include <glibmm.h>
namespace GParted
{
// Repeat a C++ string count times, where count >= 0.
static std::string repeat( const std::string & str, size_t count )
{
std::string result = "";
while ( count -- > 0 )
result += str;
return result;
}
// Number of bytes of binary data to compare and report.
const size_t BinaryStringDiffSize = 16;
// Format up to 16 bytes of binary data ready for printing as:
// Hex offset ASCII text Hex bytes
// "0x000000000 \"ABCDEFGHabcdefgh\" 41 42 43 44 45 46 47 48 61 62 63 64 65 66 67 68"
std::string BinaryStringToPrint( size_t offset, const char * s, size_t len )
{
std::ostringstream result;
result << "0x";
result.fill( '0' );
result << std::setw( 8 ) << std::hex << std::uppercase << offset << " \"";
size_t i;
for ( i = 0 ; i < BinaryStringDiffSize && i < len ; i ++ )
result.put( ( isprint( s[i] ) ) ? s[i] : '.' );
result.put( '\"' );
if ( len > 0 )
{
for ( ; i < BinaryStringDiffSize ; i ++ )
result.put( ' ' );
result.put( ' ' );
for ( i = 0 ; i < BinaryStringDiffSize && i < len ; i ++ )
result << " "
<< std::setw( 2 ) << std::hex << std::uppercase
<< (unsigned int)(unsigned char)s[i];
}
return result.str();
}
// Helper to construct and return message for equality assertion of C++ strings containing
// binary data used in:
// EXPECT_BINARYSTRINGEQ( str1, str2 )
::testing::AssertionResult CompareHelperBinaryStringEQ( const char * lhs_expr, const char * rhs_expr,
const std::string & lhs, const std::string & rhs )
{
// Loop comparing binary data in 16 byte amounts, stopping and reporting the first
// difference encountered.
bool diff = false;
const char * p1 = lhs.data();
const char * p2 = rhs.data();
size_t len1 = lhs.length();
size_t len2 = rhs.length();
while ( len1 > 0 || len2 > 0 )
{
size_t cmp_span = BinaryStringDiffSize;
cmp_span = ( len1 < cmp_span ) ? len1 : cmp_span;
cmp_span = ( len2 < cmp_span ) ? len2 : cmp_span;
if ( cmp_span < BinaryStringDiffSize && len1 != len2 )
{
diff = true;
break;
}
if ( memcmp( p1, p2, cmp_span ) != 0 )
{
diff = true;
break;
}
p1 += cmp_span;
p2 += cmp_span;
len1 -= cmp_span;
len2 -= cmp_span;
}
if ( ! diff )
return ::testing::AssertionSuccess();
else
{
size_t offset = p1 - lhs.data();
return ::testing::AssertionFailure()
<< " Expected: " << lhs_expr << "\n"
<< " Of length: " << lhs.length() << "\n"
<< "To be equal to: " << rhs_expr << "\n"
<< " Of length: " << rhs.length() << "\n"
<< "With first binary difference:\n"
<< "< " << BinaryStringToPrint( offset, p1, len1 ) << "\n"
<< "--\n"
<< "> " << BinaryStringToPrint( offset, p2, len2 );
}
}
// Nonfatal assertion that binary data in C++ strings are equal.
#define EXPECT_BINARYSTRINGEQ(str1, str2) \
EXPECT_PRED_FORMAT2(CompareHelperBinaryStringEQ, str1, str2)
// Explicit test fixture class with common variables and methods used in each test.
// Reference:
// Google Test, Primer, Test Fixtures: Using the Same Data Configuration for Multiple Tests
class PipeCaptureTest : public ::testing::Test
{
protected:
PipeCaptureTest() : capturedstr( "text to be replaced" ),
eof_signalled( false ), update_signalled( 0U ) {};
virtual void SetUp();
virtual void TearDown();
static gboolean main_loop_quit( gpointer data );
void writer_thread( const std::string & str );
void run_writer_thread();
static const size_t ReaderFD = 0;
static const size_t WriterFD = 1;
std::string inputstr;
std::string expectedstr;
Glib::ustring capturedstr;
bool eof_signalled;
unsigned update_signalled;
int pipefds[2];
Glib::RefPtr<Glib::MainLoop> glib_main_loop;
public:
void eof_callback() { eof_signalled = true; };
void update_callback_leading_match();
};
// Further setup PipeCaptureTest fixture before running each test. Create pipe and Glib
// main loop object.
void PipeCaptureTest::SetUp()
{
ASSERT_TRUE( pipe( pipefds ) == 0 ) << "Failed to create pipe. errno="
<< errno << "," << strerror( errno );
glib_main_loop = Glib::MainLoop::create();
}
// Tear down fixture after running each test. Close reading end of the pipe. Also
// re-closed the writing end of the pipe, just in case something went wrong in the test.
void PipeCaptureTest::TearDown()
{
ASSERT_TRUE( close( pipefds[ReaderFD] ) == 0 ) << "Failed to close reading end of pipe. errno="
<< errno << "," << strerror( errno );
close( pipefds[WriterFD] );
}
// Callback used to end the currently running Glib main loop.
gboolean PipeCaptureTest::main_loop_quit( gpointer data )
{
static_cast<PipeCaptureTest *>( data )->glib_main_loop->quit();
return false; // One shot g_idle_add() callback
}
// Write the string into the pipe and close the pipe for writing. Registers callback to
// end the currently running Glib main loop.
void PipeCaptureTest::writer_thread( const std::string & str )
{
const size_t BlockSize = 4096;
const char * writebuf = str.data();
size_t remaining_size = str.length();
while ( remaining_size > 0 )
{
size_t write_size = ( remaining_size > BlockSize ) ? BlockSize : remaining_size;
ssize_t written = write( pipefds[WriterFD], writebuf, write_size );
if ( written <= 0 )
{
ADD_FAILURE() << __func__ << "(): Failed to write to pipe. errno="
<< errno << "," << strerror( errno );
break;
}
remaining_size -= written;
writebuf += written;
}
ASSERT_TRUE( close( pipefds[WriterFD] ) == 0 ) << "Failed to close writing end of pipe. errno="
<< errno << "," << strerror( errno );
g_idle_add( main_loop_quit, this );
}
// Create writer thread and run the Glib main loop.
void PipeCaptureTest::run_writer_thread()
{
Glib::Thread::create( sigc::bind( sigc::mem_fun( *this, &PipeCaptureTest::writer_thread ),
inputstr ),
false );
glib_main_loop->run();
}
// Callback fired from CapturePipe counting calls and ensuring captured string matches
// leading portion of input string.
void PipeCaptureTest::update_callback_leading_match()
{
update_signalled ++;
EXPECT_BINARYSTRINGEQ( inputstr.substr( 0, capturedstr.raw().length() ),
capturedstr.raw() );
if ( HasFailure() )
// No point trying to PipeCapture the rest of the input and report
// hundreds of further failures in the same test, so end the currently
// running Glib main loop immediately.
// References:
// * Google Test, AdvancedGuide, Propagating Fatal Failures
// * Google Test, AdvancedGuide, Checking for Failures in the Current Test
glib_main_loop->quit();
}
TEST_F( PipeCaptureTest, EmptyPipe )
{
// Test capturing 0 bytes with no on EOF callback registered.
inputstr = "";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.connect_signal();
run_writer_thread();
EXPECT_BINARYSTRINGEQ( inputstr, capturedstr.raw() );
EXPECT_FALSE( eof_signalled );
}
TEST_F( PipeCaptureTest, EmptyPipeWithEOF )
{
// Test capturing 0 bytes and registered on EOF callback occurs.
inputstr = "";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.signal_eof.connect( sigc::mem_fun( *this, &PipeCaptureTest::eof_callback ) );
pc.connect_signal();
run_writer_thread();
EXPECT_BINARYSTRINGEQ( inputstr, capturedstr.raw() );
EXPECT_TRUE( eof_signalled );
}
TEST_F( PipeCaptureTest, ShortASCIIText )
{
// Test capturing small amount of ASCII text.
inputstr = "The quick brown fox jumps over the lazy dog";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.signal_eof.connect( sigc::mem_fun( *this, &PipeCaptureTest::eof_callback ) );
pc.connect_signal();
run_writer_thread();
EXPECT_BINARYSTRINGEQ( inputstr, capturedstr.raw() );
EXPECT_TRUE( eof_signalled );
}
TEST_F( PipeCaptureTest, LongASCIIText )
{
// Test capturing 1 MiB of ASCII text (requiring multiple reads in PipeCapture).
inputstr = repeat( "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_\n", 16384 );
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.signal_eof.connect( sigc::mem_fun( *this, &PipeCaptureTest::eof_callback ) );
pc.connect_signal();
run_writer_thread();
EXPECT_BINARYSTRINGEQ( inputstr, capturedstr.raw() );
EXPECT_TRUE( eof_signalled );
}
TEST_F( PipeCaptureTest, LongASCIITextWithUpdate )
{
// Test capturing 1 MiB of ASCII text, that registered update callback occurs and
// intermediate captured string is a leading match for the input string.
inputstr = repeat( "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_\n", 16384 );
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.signal_eof.connect( sigc::mem_fun( *this, &PipeCaptureTest::eof_callback ) );
pc.signal_update.connect( sigc::mem_fun( *this, &PipeCaptureTest::update_callback_leading_match ) );
pc.connect_signal();
run_writer_thread();
EXPECT_BINARYSTRINGEQ( inputstr, capturedstr.raw() );
EXPECT_GT( update_signalled, 0U );
EXPECT_TRUE( eof_signalled );
}
TEST_F( PipeCaptureTest, MinimalBinaryCrash777973 )
{
// Test for bug #777973. Minimal test case of binary data returned by fsck.fat
// as file names from a very corrupt FAT, leading to GParted crashing from a
// segmentation fault.
inputstr = "/LOST.DIR/!\xE2\x95\x9F\xE2\x88\xA9\xC2\xA0!\xE2\x95\x9F\xE2\x88\xA9\xC2";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.signal_eof.connect( sigc::mem_fun( *this, &PipeCaptureTest::eof_callback ) );
pc.connect_signal();
run_writer_thread();
// Final \xC2 byte is part of an incomplete UTF-8 character so will be skipped by
// PipeCapture.
expectedstr = "/LOST.DIR/!\xE2\x95\x9F\xE2\x88\xA9\xC2\xA0!\xE2\x95\x9F\xE2\x88\xA9";
EXPECT_BINARYSTRINGEQ( expectedstr, capturedstr.raw() );
EXPECT_TRUE( eof_signalled );
}
TEST_F( PipeCaptureTest, ReadEmbeddedNULCharacter )
{
// Test embedded NUL character in the middle of the input is read correctly.
const char * buf = "ABC\0EF";
inputstr = std::string( buf, 6 );
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.signal_eof.connect( sigc::mem_fun( *this, &PipeCaptureTest::eof_callback ) );
pc.connect_signal();
run_writer_thread();
EXPECT_BINARYSTRINGEQ( inputstr, capturedstr.raw() );
EXPECT_TRUE( eof_signalled );
}
TEST_F( PipeCaptureTest, ReadNULByteInMiddleOfMultiByteUTF8Character )
{
// Test NUL byte in the middle of reading a multi-byte UTF-8 character.
const char * buf = "\xC0\x00_45678";
inputstr = std::string( buf, 8 );
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.signal_eof.connect( sigc::mem_fun( *this, &PipeCaptureTest::eof_callback ) );
pc.connect_signal();
run_writer_thread();
// Initial \xC0 byte is part of an incomplete UTF-8 characters so will be skipped
// by PipeCapture.
buf = "\x00_45678";
expectedstr = std::string( buf, 7 );
EXPECT_BINARYSTRINGEQ( expectedstr, capturedstr.raw() );
EXPECT_TRUE( eof_signalled );
}
TEST_F( PipeCaptureTest, LineDisciplineCarriageReturn )
{
// Test PipeCapture line discipline processes carriage return character.
inputstr = "1111\n2222\r33";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.connect_signal();
run_writer_thread();
expectedstr = "1111\n3322";
EXPECT_BINARYSTRINGEQ( expectedstr, capturedstr.raw() );
}
TEST_F( PipeCaptureTest, LineDisciplineCarriageReturn2 )
{
// Test PipeCapture line discipline processes multiple carriage return characters.
inputstr = "1111\n2222\r33\r\r4";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.connect_signal();
run_writer_thread();
expectedstr = "1111\n4322";
EXPECT_BINARYSTRINGEQ( expectedstr, capturedstr.raw() );
}
TEST_F( PipeCaptureTest, LineDisciplineBackspace )
{
// Test PipeCapture line discipline processes backspace character.
inputstr = "1111\n2222\b33";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.connect_signal();
run_writer_thread();
expectedstr = "1111\n22233";
EXPECT_BINARYSTRINGEQ( expectedstr, capturedstr.raw() );
}
TEST_F( PipeCaptureTest, LineDisciplineBackspace2 )
{
// Test PipeCapture line discipline processes too many backspace characters moving
// the cursor back only to the beginning of the current line.
inputstr = "1111\n2222\b\b\b\b\b\b33\b4";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.connect_signal();
run_writer_thread();
expectedstr = "1111\n3422";
EXPECT_BINARYSTRINGEQ( expectedstr, capturedstr.raw() );
}
TEST_F( PipeCaptureTest, LineDisciplineSkipCtrlAB )
{
// Test PipeCapture line discipline skips Ctrl-A and Ctrl-B.
inputstr = "ij\x01kl\x02mn";
PipeCapture pc( pipefds[ReaderFD], capturedstr );
pc.connect_signal();
run_writer_thread();
expectedstr = "ijklmn";
EXPECT_BINARYSTRINGEQ( expectedstr, capturedstr.raw() );
}
} // namespace GParted