GPTQ is a post-training quantization method to make the model smaller. It quantizes the layers by finding a compressed version of that weight, that will yield a minimum mean squared error like below 👇
TGI allows you to both run an already GPTQ quantized model (see available models [here](https://huggingface.co/models?search=gptq)) or quantize a model of your choice using quantization script. You can run a quantized model by simply passing --quantize like below 👇
Note that TGI's GPTQ implementation doesn't use [AutoGPTQ](https://github.com/PanQiWei/AutoGPTQ) under the hood. However, models quantized using AutoGPTQ or Optimum can still be served by TGI.
You can learn more about the quantization options by running `text-generation-server quantize --help`.
If you wish to do more with GPTQ models (e.g. train an adapter on top), you can read about transformers GPTQ integration [here](https://huggingface.co/blog/gptq-integration).
You can learn more about GPTQ from the [paper](https://arxiv.org/pdf/2210.17323.pdf).
## Quantization with bitsandbytes
bitsandbytes is a library used to apply 8-bit and 4-bit quantization to models. Unlike GPTQ quantization, bitsandbytes doesn't require a calibration dataset or any post-processing – weights are automatically quantized on load. However, inference with bitsandbytes is slower than GPTQ or FP16 precision.
4-bit quantization is also possible with bitsandbytes. You can choose one of the following 4-bit data types: 4-bit float (`fp4`), or 4-bit `NormalFloat` (`nf4`). These data types were introduced in the context of parameter-efficient fine-tuning, but you can apply them for inference by automatically converting the model weights on load.
You can get more information about 8-bit quantization by reading this [blog post](https://huggingface.co/blog/hf-bitsandbytes-integration), and 4-bit quantization by reading [this blog post](https://huggingface.co/blog/4bit-transformers-bitsandbytes).