hf_text-generation-inference/server/text_generation_server/models/causal_lm.py

679 lines
25 KiB
Python
Raw Permalink Normal View History

import torch
import inspect
from dataclasses import dataclass
2023-02-13 05:02:45 -07:00
from opentelemetry import trace
from transformers import AutoTokenizer, AutoModelForCausalLM, PreTrainedTokenizerBase
from typing import Optional, Tuple, List, Type, Dict
2023-03-07 10:52:22 -07:00
from text_generation_server.models import Model
from text_generation_server.models.types import (
Batch,
PrefillTokens,
Generation,
GeneratedText,
)
from text_generation_server.pb import generate_pb2
from text_generation_server.utils import NextTokenChooser, StoppingCriteria, Sampling
2023-02-13 05:02:45 -07:00
tracer = trace.get_tracer(__name__)
@dataclass
class CausalLMBatch(Batch):
batch_id: int
requests: List[generate_pb2.Request]
requests_idx_mapping: Dict[int, int]
2022-11-07 04:53:56 -07:00
# Decoder values
input_ids: torch.Tensor
attention_mask: torch.Tensor
2023-01-20 07:35:22 -07:00
position_ids: torch.Tensor
2022-11-07 04:53:56 -07:00
past_key_values: Optional[List[Tuple]]
# All tokens
all_input_ids: List[torch.Tensor]
2022-11-07 04:53:56 -07:00
# Lengths of all generations present in the batch
input_lengths: List[int]
prefix_offsets: List[int]
read_offsets: List[int]
2022-11-07 04:53:56 -07:00
# Generation helpers
next_token_choosers: List[NextTokenChooser]
stopping_criterias: List[StoppingCriteria]
2022-11-07 04:53:56 -07:00
# Metadata used for padding
max_input_length: int
padding_right_offset: int
# Maximum number of tokens this batch will grow to
max_tokens: int
2022-12-08 10:49:33 -07:00
# Past metadata
keys_head_dim_last: bool = True
def to_pb(self) -> generate_pb2.CachedBatch:
return generate_pb2.CachedBatch(
id=self.batch_id,
request_ids=[r.id for r in self.requests],
size=len(self),
max_tokens=self.max_tokens,
)
@classmethod
def from_pb(
2023-01-20 04:24:39 -07:00
cls,
pb: generate_pb2.Batch,
tokenizer: PreTrainedTokenizerBase,
dtype: torch.dtype,
2023-01-20 04:24:39 -07:00
device: torch.device,
) -> "CausalLMBatch":
inputs = []
next_token_choosers = []
stopping_criterias = []
prefix_offsets = []
read_offsets = []
requests_idx_mapping = {}
# Parse batch
max_truncation = 0
padding_right_offset = 0
max_decode_tokens = 0
for i, r in enumerate(pb.requests):
requests_idx_mapping[r.id] = i
inputs.append(r.inputs)
next_token_choosers.append(NextTokenChooser.from_pb(r.parameters, device))
stopping_criteria = StoppingCriteria.from_pb(
r.stopping_parameters, tokenizer
)
stopping_criterias.append(stopping_criteria)
max_truncation = max(max_truncation, r.truncate)
max_decode_tokens += stopping_criteria.max_new_tokens
padding_right_offset = max(
padding_right_offset, stopping_criteria.max_new_tokens
)
2022-11-07 04:53:56 -07:00
tokenized_inputs = tokenizer(
2022-12-12 10:25:22 -07:00
inputs,
return_tensors="pt",
padding=True,
2023-01-20 04:24:39 -07:00
return_token_type_ids=False,
truncation=True,
max_length=max_truncation,
).to(device)
for _ in pb.requests:
input_len = tokenized_inputs["input_ids"].shape[1]
prefix_offsets.append(input_len - 5)
read_offsets.append(input_len)
input_lengths = tokenized_inputs["attention_mask"].sum(1)
max_input_length = input_lengths.max()
input_ids = tokenized_inputs["input_ids"]
# Allocate maximum attention_mask
attention_mask = input_ids.new_zeros(
(pb.size, max_input_length + padding_right_offset)
)
# Copy tokenizer attention_mask into fully allocated attention_mask
attention_mask[:, :max_input_length] = tokenized_inputs["attention_mask"]
2023-01-20 07:35:22 -07:00
position_ids = tokenized_inputs["attention_mask"].long().cumsum(-1) - 1
position_ids.masked_fill_(tokenized_inputs["attention_mask"] == 0, 1)
all_input_ids = tokenized_inputs["input_ids"].T.split(1, dim=1)
max_tokens = len(inputs) * (max_input_length + max_decode_tokens)
return cls(
batch_id=pb.id,
requests=pb.requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
attention_mask=attention_mask,
2023-01-20 07:35:22 -07:00
position_ids=position_ids,
2022-11-07 04:53:56 -07:00
past_key_values=None,
all_input_ids=list(all_input_ids),
input_lengths=input_lengths.tolist(),
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length.item(),
padding_right_offset=padding_right_offset,
max_tokens=max_tokens,
)
@tracer.start_as_current_span("filter")
def filter(self, request_ids: List[int]) -> Optional["CausalLMBatch"]:
if len(request_ids) == 0:
raise ValueError("Batch must have at least one request")
if len(request_ids) == len(self):
return self
keep_indices = []
# New values after filtering
requests_idx_mapping = {}
requests = []
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
max_input_length = 0
next_token_choosers = []
stopping_criterias = []
total_remaining_decode_tokens = 0
new_padding_right_offset = 0
for i, request_id in enumerate(request_ids):
idx = self.requests_idx_mapping[request_id]
requests_idx_mapping[request_id] = i
keep_indices.append(idx)
requests.append(self.requests[idx])
prefix_offsets.append(self.prefix_offsets[idx])
read_offsets.append(self.read_offsets[idx])
all_input_ids.append(self.all_input_ids[idx])
request_input_length = self.input_lengths[idx]
input_lengths.append(request_input_length)
max_input_length = max(max_input_length, request_input_length)
next_token_choosers.append(self.next_token_choosers[idx])
stopping_criteria = self.stopping_criterias[idx]
stopping_criterias.append(stopping_criteria)
remaining_decode_tokens = (
stopping_criteria.max_new_tokens - stopping_criteria.current_tokens
)
total_remaining_decode_tokens += remaining_decode_tokens
new_padding_right_offset = max(
new_padding_right_offset, remaining_decode_tokens
)
# Apply indices to input_ids, attention mask, past key values and other items that need to be cached
input_ids = self.input_ids[keep_indices]
position_ids = self.position_ids[keep_indices]
self.attention_mask = self.attention_mask[
keep_indices,
-(self.padding_right_offset + max_input_length) : (
self.attention_mask.shape[1] - self.padding_right_offset
)
+ new_padding_right_offset,
]
# Ensure that past_key_values tensors can be updated in-place
if type(self.past_key_values[0]) == tuple:
self.past_key_values = [list(layer) for layer in self.past_key_values]
# Update tensors in-place to allow incremental garbage collection
past_kv_length = max_input_length - 1
for layer in self.past_key_values:
past_keys, past_values = layer
if len(past_keys.shape) == 3:
# Force past to be of dim [self_size, num_heads, ...] for easy indexing
past_keys = past_keys.view(len(self), -1, *past_keys.shape[-2:])
past_values = past_values.view(len(self), -1, *past_values.shape[-2:])
if self.keys_head_dim_last:
layer[0] = past_keys[keep_indices, :, -past_kv_length:, :]
else:
layer[0] = past_keys[keep_indices, :, :, -past_kv_length:]
del past_keys
layer[1] = past_values[keep_indices, :, -past_kv_length:, :]
del past_values
max_tokens = len(request_ids) * max_input_length + total_remaining_decode_tokens
self.requests = requests
self.requests_idx_mapping = requests_idx_mapping
self.input_ids = input_ids
self.position_ids = position_ids
self.all_input_ids = all_input_ids
self.input_lengths = input_lengths
self.prefix_offsets = prefix_offsets
self.read_offsets = read_offsets
self.next_token_choosers = next_token_choosers
self.stopping_criterias = stopping_criterias
self.max_input_length = max_input_length
self.padding_right_offset = new_padding_right_offset
self.max_tokens = max_tokens
return self
@classmethod
2023-02-13 05:02:45 -07:00
@tracer.start_as_current_span("concatenate")
def concatenate(cls, batches: List["CausalLMBatch"]) -> "CausalLMBatch":
# Used for padding
total_batch_size = 0
max_input_length = 0
padding_right_offset = 0
for batch in batches:
total_batch_size += len(batch)
max_input_length = max(max_input_length, batch.max_input_length)
padding_right_offset = max(padding_right_offset, batch.padding_right_offset)
# Batch attributes
requests = []
requests_idx_mapping = {}
2022-11-07 04:53:56 -07:00
input_lengths = []
prefix_offsets = []
read_offsets = []
all_input_ids = []
next_token_choosers = []
stopping_criterias = []
max_tokens = 0
2022-11-07 04:53:56 -07:00
# Batch tensors
input_ids = None
attention_mask = None
2023-01-20 07:35:22 -07:00
position_ids = None
2022-11-07 04:53:56 -07:00
past_key_values = []
# Used for slicing correctly inside the tensors
# Equivalent to a cumsum on batch sizes
start_index = 0
for i, batch in enumerate(batches):
requests.extend(batch.requests)
2022-11-07 04:53:56 -07:00
input_lengths.extend(batch.input_lengths)
prefix_offsets.extend(batch.prefix_offsets)
read_offsets.extend(batch.read_offsets)
all_input_ids.extend(batch.all_input_ids)
next_token_choosers.extend(batch.next_token_choosers)
stopping_criterias.extend(batch.stopping_criterias)
if i == 0:
requests_idx_mapping = batch.requests_idx_mapping
else:
# We need to offset the mapping for each batch by the cumulative batch size
for k, v in batch.requests_idx_mapping.items():
requests_idx_mapping[k] = v + start_index
# Slicing end index for this batch
end_index = start_index + len(batch)
# We only concatenate batches that did at least one step
2022-12-12 10:25:22 -07:00
if batch.past_key_values is None:
raise ValueError("only concatenate prefilled batches")
2022-11-07 04:53:56 -07:00
# Create empty tensor
# input_ids is always of shape [batch_size, 1]
# We do not need to pad it
if input_ids is None:
input_ids = batch.input_ids.new_empty((total_batch_size, 1))
2022-11-07 04:53:56 -07:00
# Copy to correct indices
input_ids[start_index:end_index] = batch.input_ids
# Create padded tensor
if attention_mask is None:
attention_mask = batch.attention_mask.new_zeros(
(total_batch_size, max_input_length + padding_right_offset),
)
# We need to slice the attention mask to remove padding from previous steps
# and to remove unused allocated space
left_offset = max_input_length - batch.max_input_length
batch_left_offset = (
batch.attention_mask.shape[1]
- batch.max_input_length
- batch.padding_right_offset
)
2022-11-07 04:53:56 -07:00
attention_mask[
start_index:end_index,
left_offset:-padding_right_offset,
] = batch.attention_mask[
:,
batch_left_offset : -batch.padding_right_offset,
]
2023-01-20 07:35:22 -07:00
# Create empty tensor
# position_ids is always of shape [batch_size, 1]
if position_ids is None:
position_ids = batch.position_ids.new_empty((total_batch_size, 1))
position_ids[start_index:end_index] = batch.position_ids
# Shenanigans to get dimensions because BLOOM outputs a past with a different shape
# BLOOM Keys: [batch_size * num_heads, head_dim, seq_length]
# BLOOM Values: [batch_size * num_heads, seq_length, head_dim]
# And ensure that we can update tensors in-place
if type(batch.past_key_values[0]) == tuple:
batch.past_key_values = [
[t.view(len(batch), -1, *t.shape[-2:]) for t in layer]
for layer in batch.past_key_values
]
elif len(batch.past_key_values[0][0].shape) == 3:
for layer in batch.past_key_values:
for k, t in enumerate(layer):
layer[k] = t.view(len(batch), -1, *t.shape[-2:])
# Add eventual padding tokens that were added while concatenating
max_tokens += batch.max_tokens + (
max_input_length - batch.max_input_length
) * len(batch)
start_index = end_index
first_past_kvs = batches[0].past_key_values
_, num_heads, padded_sequence_length, head_dim = first_past_kvs[0][1].shape
padded_past_values_shape = (
total_batch_size,
num_heads,
max_input_length - 1,
head_dim,
)
if batches[0].keys_head_dim_last:
padded_past_keys_shape = padded_past_values_shape
else:
# seq_length is last for BLOOM
padded_past_keys_shape = (
total_batch_size,
num_heads,
head_dim,
max_input_length - 1,
)
# Iterate over attention layers
# Concatenate past key values layer by layer to allow incremental garbage collection
for j in range(len(first_past_kvs)):
padded_past_keys = first_past_kvs[j][0].new_zeros(padded_past_keys_shape)
start_index = 0
for batch in batches:
past_keys = batch.past_key_values[j][0]
# Clear reference to the original tensor
batch.past_key_values[j][0] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the keys to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
2022-12-08 10:49:33 -07:00
if batch.keys_head_dim_last:
padded_past_keys[
start_index:end_index, :, -past_seq_len:, :
] = past_keys[:, :, -past_seq_len:, :]
else:
# BLOOM case
padded_past_keys[
start_index:end_index, :, :, -past_seq_len:
] = past_keys[:, :, :, -past_seq_len:]
del past_keys
start_index = end_index
padded_past_values = first_past_kvs[j][1].new_zeros(
padded_past_values_shape
)
start_index = 0
for batch in batches:
past_values = batch.past_key_values[j][1]
# Clear reference to the original tensor
batch.past_key_values[j][1] = None
# Slicing end index for this batch
end_index = start_index + len(batch)
# We slice the past values to remove the padding from previous batches
past_seq_len = batch.max_input_length - 1
padded_past_values[
start_index:end_index, :, -past_seq_len:, :
] = past_values[:, :, -past_seq_len:, :]
del past_values
# Update values
start_index = end_index
past_key_values.append([padded_past_keys, padded_past_values])
return cls(
batch_id=batches[0].batch_id,
requests=requests,
requests_idx_mapping=requests_idx_mapping,
input_ids=input_ids,
2022-11-07 04:53:56 -07:00
attention_mask=attention_mask,
2023-01-20 07:35:22 -07:00
position_ids=position_ids,
2022-11-07 04:53:56 -07:00
past_key_values=past_key_values,
all_input_ids=all_input_ids,
2022-11-07 04:53:56 -07:00
input_lengths=input_lengths,
prefix_offsets=prefix_offsets,
read_offsets=read_offsets,
next_token_choosers=next_token_choosers,
stopping_criterias=stopping_criterias,
max_input_length=max_input_length,
padding_right_offset=padding_right_offset,
2022-12-08 10:49:33 -07:00
keys_head_dim_last=batches[0].keys_head_dim_last,
max_tokens=max_tokens,
)
def __len__(self):
return len(self.requests)
class CausalLM(Model):
def __init__(
self,
model_id: str,
revision: Optional[str] = None,
feat(server): GPTQ quantization (step1) (#277) Changes only the type from `bool` to `Option<Enum>` pretty much everywhere. - Use `Optional[str]` in Python (easier to manage than importing type everywhere). Except for the cli to get proper validation - Updated all models to handle gracefully new values. (Error out if unknown value, or gptq since not implemented). <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-05-12 06:46:41 -06:00
quantize: Optional[str] = None,
dtype: Optional[torch.dtype] = None,
trust_remote_code: bool = False,
):
if torch.cuda.is_available():
device = torch.device("cuda")
dtype = torch.float16 if dtype is None else dtype
else:
2022-12-08 10:49:33 -07:00
if quantize:
raise ValueError("quantization is not available on CPU")
device = torch.device("cpu")
dtype = torch.float32
2023-01-31 10:53:56 -07:00
tokenizer = AutoTokenizer.from_pretrained(
model_id,
revision=revision,
padding_side="left",
truncation_side="left",
trust_remote_code=trust_remote_code,
2023-01-31 10:53:56 -07:00
)
model = AutoModelForCausalLM.from_pretrained(
model_id,
2023-01-31 10:53:56 -07:00
revision=revision,
torch_dtype=dtype,
device_map="auto"
if torch.cuda.is_available() and torch.cuda.device_count() > 1
else None,
feat(server): GPTQ quantization (step1) (#277) Changes only the type from `bool` to `Option<Enum>` pretty much everywhere. - Use `Optional[str]` in Python (easier to manage than importing type everywhere). Except for the cli to get proper validation - Updated all models to handle gracefully new values. (Error out if unknown value, or gptq since not implemented). <!-- Congratulations! You've made it this far! You're not quite done yet though. Once merged, your PR is going to appear in the release notes with the title you set, so make sure it's a great title that fully reflects the extent of your awesome contribution. Then, please replace this with a description of the change and which issue is fixed (if applicable). Please also include relevant motivation and context. List any dependencies (if any) that are required for this change. Once you're done, someone will review your PR shortly (see the section "Who can review?" below to tag some potential reviewers). They may suggest changes to make the code even better. If no one reviewed your PR after a week has passed, don't hesitate to post a new comment @-mentioning the same persons---sometimes notifications get lost. --> <!-- Remove if not applicable --> Fixes # (issue) ## Before submitting - [ ] This PR fixes a typo or improves the docs (you can dismiss the other checks if that's the case). - [ ] Did you read the [contributor guideline](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md#start-contributing-pull-requests), Pull Request section? - [ ] Was this discussed/approved via a Github issue or the [forum](https://discuss.huggingface.co/)? Please add a link to it if that's the case. - [ ] Did you make sure to update the documentation with your changes? Here are the [documentation guidelines](https://github.com/huggingface/transformers/tree/main/docs), and [here are tips on formatting docstrings](https://github.com/huggingface/transformers/tree/main/docs#writing-source-documentation). - [ ] Did you write any new necessary tests? ## Who can review? Anyone in the community is free to review the PR once the tests have passed. Feel free to tag members/contributors who may be interested in your PR. <!-- Your PR will be replied to more quickly if you can figure out the right person to tag with @ @OlivierDehaene OR @Narsil -->
2023-05-12 06:46:41 -06:00
load_in_8bit=quantize == "bitsandbytes",
trust_remote_code=trust_remote_code,
)
if torch.cuda.is_available() and torch.cuda.device_count() == 1:
model = model.cuda()
if tokenizer.pad_token_id is None:
if model.config.pad_token_id is not None:
tokenizer.pad_token_id = model.config.pad_token_id
elif model.config.eos_token_id is not None:
tokenizer.pad_token_id = model.config.eos_token_id
elif tokenizer.eos_token_id is not None:
tokenizer.pad_token_id = tokenizer.eos_token_id
else:
tokenizer.add_special_tokens({"pad_token": "[PAD]"})
super(CausalLM, self).__init__(
model=model,
tokenizer=tokenizer,
requires_padding=True,
dtype=dtype,
device=device,
)
@property
def batch_type(self) -> Type[CausalLMBatch]:
return CausalLMBatch
2023-01-20 04:24:39 -07:00
def decode(self, generated_ids: List[int]) -> str:
return self.tokenizer.decode(
generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
2023-01-20 04:24:39 -07:00
)
def forward(
2023-01-20 07:35:22 -07:00
self, input_ids, attention_mask, position_ids, past_key_values: Optional = None
) -> Tuple[torch.Tensor, List[Tuple[torch.Tensor, torch.Tensor]]]:
# Model Forward
kwargs = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"past_key_values": past_key_values,
"use_cache": True,
"return_dict": True,
}
if self.has_position_ids:
kwargs["position_ids"] = position_ids
outputs = self.model.forward(**kwargs)
return outputs.logits, outputs.past_key_values
2023-02-13 05:02:45 -07:00
@tracer.start_as_current_span("generate_token")
def generate_token(
self, batch: CausalLMBatch
) -> Tuple[List[Generation], Optional[CausalLMBatch]]:
# slice the attention mask to the correct shape
attention_mask = batch.attention_mask[:, : -batch.padding_right_offset]
logits, past = self.forward(
batch.input_ids,
attention_mask,
batch.position_ids,
batch.past_key_values,
)
# Results
generations: List[Generation] = []
stopped = True
# Zipped iterator
iterator = zip(
batch.requests,
2022-11-07 04:53:56 -07:00
batch.input_lengths,
batch.prefix_offsets,
batch.read_offsets,
logits,
batch.next_token_choosers,
batch.stopping_criterias,
batch.all_input_ids,
)
# For each member of the batch
for i, (
request,
input_length,
prefix_offset,
read_offset,
logits,
next_token_chooser,
stopping_criteria,
2022-12-15 09:03:56 -07:00
all_input_ids,
) in enumerate(iterator):
# Select next token
2023-02-13 05:02:45 -07:00
next_token_id, logprobs = next_token_chooser(
all_input_ids.view(1, -1), logits[-1:, :]
2023-02-13 05:02:45 -07:00
)
# Append next token to all tokens
all_input_ids = torch.cat([all_input_ids, next_token_id])
2022-12-15 09:03:56 -07:00
new_input_length = input_length + 1
# Generated token
next_token_logprob = logprobs[-1, next_token_id]
next_token_id_squeezed = next_token_id.squeeze()
next_token_text, prefix_offset, read_offset = self.decode_token(
all_input_ids[:, 0], prefix_offset, read_offset
)
# Evaluate stopping criteria
2022-12-16 08:03:39 -07:00
stop, reason = stopping_criteria(
next_token_id_squeezed,
next_token_text,
2022-12-16 08:03:39 -07:00
)
if not stop:
stopped = False
# Shard generations
# All generations will be appended in the rust sharded client
if i % self.world_size == self.rank:
if stop:
# Decode generated tokens
output_text = self.decode(
all_input_ids[-stopping_criteria.current_tokens :, 0]
)
# Get seed
if isinstance(next_token_chooser.choice, Sampling):
seed = next_token_chooser.choice.seed
else:
seed = None
generated_text = GeneratedText(
output_text, stopping_criteria.current_tokens, reason, seed
)
else:
generated_text = None
# Prefill
if stopping_criteria.current_tokens == 1 and request.prefill_logprobs:
# Remove generated token to only have prefill and add nan for first prompt token
prefill_logprobs = [float("nan")] + torch.log_softmax(
logits, -1
).gather(1, all_input_ids[1:]).squeeze(1)[
-new_input_length:-1
].tolist()
prefill_token_ids = all_input_ids[-new_input_length:-1]
prefill_texts = self.tokenizer.batch_decode(
prefill_token_ids,
clean_up_tokenization_spaces=False,
skip_special_tokens=False,
)
prefill_tokens = PrefillTokens(
prefill_token_ids, prefill_logprobs, prefill_texts
)
else:
prefill_tokens = None
generation = Generation(
request.id,
prefill_tokens,
next_token_id_squeezed,
next_token_logprob,
next_token_text,
next_token_id_squeezed.item() in self.all_special_ids,
generated_text,
)
generations.append(generation)
# Update values
batch.input_ids[i, 0] = next_token_id
batch.all_input_ids[i] = all_input_ids
batch.input_lengths[i] = new_input_length
batch.prefix_offsets[i] = prefix_offset
batch.read_offsets[i] = read_offset
batch.max_input_length = max(batch.max_input_length, new_input_length)
# We finished all generations in the batch; there is no next batch
if stopped:
return generations, None
# Slice unused values from prefill
batch.input_ids = batch.input_ids[:, :1]
# Update attention_mask as we added a new token to input_ids
batch.attention_mask[:, -batch.padding_right_offset] = 1
# Decrease right offset
batch.padding_right_offset -= 1
2023-01-20 07:35:22 -07:00
# Update position_ids
batch.position_ids = batch.position_ids[:, -1:] + 1
# Update past key values
batch.past_key_values = past
return generations, batch