hf_text-generation-inference/docs/source/installation_intel.md

37 lines
1.7 KiB
Markdown
Raw Normal View History

# Using TGI with Intel GPUs
TGI optimized models are supported on Intel Data Center GPU [Max1100](https://www.intel.com/content/www/us/en/products/sku/232876/intel-data-center-gpu-max-1100/specifications.html), [Max1550](https://www.intel.com/content/www/us/en/products/sku/232873/intel-data-center-gpu-max-1550/specifications.html), the recommended usage is through Docker.
On a server powered by Intel GPUs, TGI can be launched with the following command:
```bash
model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --rm --privileged --cap-add=sys_nice \
--device=/dev/dri \
--ipc=host --shm-size 1g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:2.4.1-intel-xpu \
--model-id $model --cuda-graphs 0
```
# Using TGI with Intel CPUs
Intel® Extension for PyTorch (IPEX) also provides further optimizations for Intel CPUs. The IPEX provides optimization operations such as flash attention, page attention, Add + LayerNorm, ROPE and more.
On a server powered by Intel CPU, TGI can be launched with the following command:
```bash
model=teknium/OpenHermes-2.5-Mistral-7B
volume=$PWD/data # share a volume with the Docker container to avoid downloading weights every run
docker run --rm --privileged --cap-add=sys_nice \
--device=/dev/dri \
--ipc=host --shm-size 1g --net host -v $volume:/data \
ghcr.io/huggingface/text-generation-inference:2.4.1-intel-cpu \
--model-id $model --cuda-graphs 0
```
The launched TGI server can then be queried from clients, make sure to check out the [Consuming TGI](./basic_tutorials/consuming_tgi) guide.